Humedales artificiales y celdas de combustibles microbianas como sistemas individuales y combinados para el tratamiento de aguas residuales: una revisión

Contenido principal en artículo

Karla Montenegro-Rosero Lenys Fernández Cristina Villamar-Ayala Patricio Espinoza-Montero

Resumen

El aumento poblacional y el desarrollo tecnológico ha ocasionado una gran demanda energética, lo que ha dado paso a que varios grupos de investigación incursionen en la búsqueda de soluciones a corto y mediano plazo. El uso de tecnologías que permitan tratar aguas contaminadas y la generación simultánea de energía eléctrica surge como una alternativa viable para dar solución a este problema. En este documento se revisa el mecanismo para el tratamiento de agua residual y la generación de energía eléctrica simultánea, a través de sistemas combinados de humedales acoplados a celdas de combustible microbianas (CW-MFC, por sus siglas en inglés). El objetivo de esta revisión es describir los componentes y funcionamiento de los sistemas individuales CW y MFC, así como también del sistema combinado CW-MFC, los cuales han sido empleados en investigaciones recientes. Se exploran los principales estudios, relacionados con el material con el cual se construyen los electrodos, que generen mayor eficiencia energética y materiales filtrantes que beneficien el tratamiento del agua residual. Además, se presentan los desafíos en este ámbito de investigación. Los CW y las MFC son sistemas que combinados mejoran la eficiencia en el tratamiento de agua residual y a la vez permiten aprovechar la energía eléctrica que los microorganismos generan durante el proceso de oxidación de la materia orgánica.

Detalles del artículo

Cómo citar
MONTENEGRO-ROSERO, Karla et al. Humedales artificiales y celdas de combustibles microbianas como sistemas individuales y combinados para el tratamiento de aguas residuales: una revisión. infoANALÍTICA, [S.l.], v. 7, n. 2, p. 15-37, jul. 2019. ISSN 2602-8344. Disponible en: <http://infoanalitica-puce.edu.ec/index.php/infoanalitica/article/view/100>. Fecha de acceso: 18 nov. 2019 doi: https://doi.org/10.26807/ia.v7i2.100.
Sección
Artículos de revisión

Citas

Ahn, Y., Jo, S. Y., Song, Y. C., Lee, W., & Chung, J. W. (2017). Application of Reticulated Vitreous Carbons doped with low-cost catalysts as the cathodes in microbial fuel cells. KSCE Journal of Civil Engineering, 21(3), 623–628. https://doi.org/10.1007/s12205-016-1792-7

Ángeles, M. D. L., Patagónico, C. U., Rivadavia, C., & Lladser, P. G. (2005). Crisis Energética Mundial. Colegio Universitario Patagónico, 1–5.

Camacho, J. V., Montano, C., Andrés, M., Rodrigo, R., Jesús, F., Morales, F., & Cañizares, P. C. (2014). ENERGY PRODUCTION FROM WASTEWATER USING HORIZONTAL AND VERTICAL SUBSURFACE FLOW CONSTRUCTED WETLANDS, 13(10), 2523.

Can, O., & Yakar, A. (2017). A hybrid constructed wetland combined with microbial fuel cell for boron ( B ) removal and bioelectric production. Ecological Engineering, 102, 411–421. https://doi.org/10.1016/j.ecoleng.2017.02.034

Corbella, C., Garfí, M., & Puigagut, J. (2016). Science of the Total Environment Long-term assessment of best cathode position to maximise microbial fuel cell performance in horizontal subsurface fl ow constructed wetlands, 564, 448–455. https://doi.org/10.1016/j.scitotenv.2016.03.170

Edwards, C. D. (2000). A handbook of constructed wetlands. Wetlands, 1, 53. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.7471&rep=rep1&type=pdf

EPA. (1993). Subsurface flow constructed wetlands for wastewater treatment. A technology assessment. United States Environmental Protection Agency, (July), 382. https://doi.org/10.1016/0925-8574(93)90009-5

Fallis, A. . (2013). Manual De Tecnologías No Convencionales Para La Depuración De Aguas Residuales. Journal of Chemical Information and Modeling (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004

Fang, Z., Song, H., Cang, N., & Li, X. (2013). Bioresource Technology Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresource Technology, 144, 165–171. https://doi.org/10.1016/j.biortech.2013.06.073

Fasahat, S. (2017). Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment, (March).

Fioreze, M., & Mancuso, M. A. (2019). MODFLOW and MODPATH for hydrodynamic simulation of porous media in horizontal subsurface flow constructed wetlands: A tool for design criteria. Ecological Engineering, 130(January), 45–52. https://doi.org/10.1016/j.ecoleng.2019.01.012

Gaurav, K., Singh, R., Tiwari, B. K., & Srivastava, R. (2019). Novel proton exchange membranes based on PVC for microbial fuel cells (MFCs). Journal of Polymer Engineering, 0(0), 360–367. https://doi.org/10.1515/polyeng-2018-0276

Hartl, M., Bedoya-ríos, D. F., Fernández-gatell, M., Rousseau, D. P. L., Du, G., Garfí, M., & Puigagut, J. (2019). Science of the Total Environment Contaminants removal and bacterial activity enhancement along the fl ow path of constructed wetland microbial fuel cells. Science of the Total Environment, 652, 1195–1208. https://doi.org/10.1016/j.scitotenv.2018.10.234

Kadam, S. K., Chandanshive, V. V., Rane, N. R., Patil, S. M., Gholave, A. R., Khandare, R. V., … Govindwar, S. P. (2018). Phytobeds with Fimbristylis dichotoma and Ammannia baccifera for treatment of real textile effluent: An in situ treatment, anatomical studies and toxicity evaluation. Environmental Research, 160(September 2017), 1–11. https://doi.org/10.1016/j.envres.2017.09.009

Li, H., Zhang, S., Yang, X., Yang, Y., Xu, H., & Li, X. (2019). Chemosphere Enhanced degradation of bisphenol A and ibuprofen by an up- fl ow microbial fuel cell-coupled constructed wetland and analysis of bacterial community structure. Chemosphere, 217, 599–608. https://doi.org/10.1016/j.chemosphere.2018.11.022

Liu, H., Ramnarayanan, R., & Logan, B. E. (2004). Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environmental Science and Technology, 38(7), 2281–2285. https://doi.org/10.1021/es034923g

Liu, Y., Song, P., Gai, R., Yan, C., Jiao, Y., Yin, D., … Zhang, L. (2019). Recovering platinum from wastewater by charring biofilm of microbial fuel cells (MFCs). Journal of Saudi Chemical Society, 23(3), 338–345. https://doi.org/10.1016/j.jscs.2018.08.003

Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., … Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192. https://doi.org/10.1021/es0605016

Malvankar, N. S., & Lovley, D. R. (2014). Microbial nanowires for bioenergy applications. Current Opinion in Biotechnology, 27, 88–95. https://doi.org/10.1016/j.copbio.2013.12.003

Oon, Y. L., Ong, S. A., Ho, L. N., Wong, Y. S., Dahalan, F. A., Oon, Y. S., … Nordin, N. (2017). Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresource Technology, 224, 265–275. https://doi.org/10.1016/j.biortech.2016.10.079

Oon, Y., Ong, S., Ho, L., Wong, Y., Dahalan, F. A., Oon, Y., … Nordin, N. (2018). Title : Authors : Address : Water Research Group ( WAREG ), School of Environmental Engineering , Universiti Soon-An Ong. Bioresource Technology. https://doi.org/10.1016/j.biortech.2018.06.035

Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology, 23(6), 291–298. https://doi.org/10.1016/j.tibtech.2005.04.008

Revelo, D. M., & Hurtado, N. H. (2013). Celdas de Combustible Microbianas ( CCMs ): Un Reto para la Remoción de Materia Orgánica y la Generación de Energía Eléctrica Microbial Fuel Cells ( MFCs ): A Challenge for the Removal of Organic Matter and Electricity Generation, 24(6), 17–28. https://doi.org/10.4067/S0718-07642013000600004

Romero, A., Vásquez, J., & González, A. (2012). Bacterias, fuente de energía para el futuro. Tecnura, (32), 118–143. https://doi.org/http://dx.doi.org/10.14483/udistrital.jour.tecnura.2012.2.a10

Saba, B., Khan, M., Christy, A. D., & Veno, B. (2018). PT US. Bioelectrochemistry, #pagerange#. https://doi.org/10.1016/j.bioelechem.2018.12.005

Shen, X., Zhang, J., Liu, D., Hu, Z., & Liu, H. (2018). Enhance performance of microbial fuel cell coupled surface fl ow constructed wetland by using submerged plants and enclosed anodes. Chemical Engineering Journal, 351(June), 312–318. https://doi.org/10.1016/j.cej.2018.06.117

Shi, Y., Yang, X., Ning, X., & Yang, Q. (2018). Research progress of microbial fuel cell and constructed wetland coupling system Research progress of microbial fuel cell and constructed wetland coupling system. https://doi.org/10.1088/1755-1315/199/5/052014

Song, H., Li, H., Zhang, S., Yang, Y., Zhang, L., & Xu, H. (2018). Fate of sulfadiazine and its corresponding resistance genes in up- fl ow microbial fuel cell coupled constructed wetlands : E ff ects of circuit operation mode and hydraulic retention time. Chemical Engineering Journal, 350(June), 920–929. https://doi.org/10.1016/j.cej.2018.06.035

Srivastava, P., Yadav, A. K., & Mishra, B. K. (2015). Contributed Equally , * Corresponding Author : Dr . Asheesh K Yadav , Tel . + 91-674-. BIORESOURCE TECHNOLOGY. https://doi.org/10.1016/j.biortech.2015.05.072

USEPA. (1988). Design Manual: Constructed Wetlands and Aquatic Plant Systems for Municipal Wastewater Treatment, (September), 92. https://doi.org/EPA/625/1-88/022

Wang, J., Song, X., Wang, Y., Bai, J., Bai, H., Yan, D., … Dong, G. (2017). Bioresource Technology Bioelectricity generation , contaminant removal and bacterial community distribution as a ff ected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell. Bioresource Technology, 245(September), 372–378. https://doi.org/10.1016/j.biortech.2017.08.191

Wang, X., Tian, Y., Liu, H., Zhao, X., & Peng, S. (2019a). Science of the Total Environment Optimizing the performance of organics and nutrient removal in constructed wetland – microbial fuel cell systems. Science of the Total Environment, 653, 860–871. https://doi.org/10.1016/j.scitotenv.2018.11.005

Wang, X., Tian, Y., Liu, H., Zhao, X., & Peng, S. (2019b). Science of the Total Environment The in fl uence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands. Science of the Total Environment, 656, 270–279. https://doi.org/10.1016/j.scitotenv.2018.11.328

Wu, S., Kuschk, P., Brix, H., Vymazal, J., & Dong, R. (2014). ScienceDirect Development of constructed wetlands in performance intensifications for wastewater treatment : A nitrogen and organic matter targeted review. Water Research, 57, 40–55. https://doi.org/10.1016/j.watres.2014.03.020

Wu, S., Lv, T., Lu, Q., Ajmal, Z., & Dong, R. (2017). Treatment of anaerobic digestate supernatant in microbial fuel cell coupled constructed wetlands: Evaluation of nitrogen removal, electricity generation, and bacterial community response. Science of the Total Environment, 580, 339–346. https://doi.org/10.1016/j.scitotenv.2016.11.138

Xie, T., Jing, Z., Hu, J., Yuan, P., Liu, Y., & Cao, S. (2018). Degradation of nitrobenzene-containing wastewater by a microbial-fuel-cell- coupled constructed wetland. Ecological Engineering, 112(August 2017), 65–71. https://doi.org/10.1016/j.ecoleng.2017.12.018

Xu, F., Cao, F., Kong, Q., Zhou, L., Yuan, Q., Zhu, Y., … Wang, Z. (2018). Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chemical Engineering Journal, 339(January), 479–486. https://doi.org/10.1016/j.cej.2018.02.003

Xu, L., Zhao, Y., Tang, C., & Doherty, L. (2018). In fl uence of glass wool as separator on bioelectricity generation in a constructed wetland-microbial fuel cell. Journal of Environmental Management, 207, 116–123. https://doi.org/10.1016/j.jenvman.2017.11.035

Xu, L., Zhao, Y., Wang, X., & Yu, W. (2018). Applying multiple bio-cathodes in constructed wetland-microbial fuel cell for promoting energy production and bioelectrical derived nitri fi cation- denitri fi cation process. Chemical Engineering Journal, 344(March), 105–113. https://doi.org/10.1016/j.cej.2018.03.065

Yang, Q. (2016). Treatment of Oil Wastewater and Electricity Generation by Integrating Constructed Wetland with. https://doi.org/10.3390/ma9110885

Yin, T., Zhang, H., Yang, G., & Wang, L. (2019). Polyaniline composite TiO2 nanosheets modified carbon paper electrode as a high performance bioanode for microbial fuel cells. Synthetic Metals, 252(November 2018), 8–14. https://doi.org/10.1016/j.synthmet.2019.03.027

Zhang, S., Yang, X., Li, H., Song, H., Wang, R., & Dai, Z. (2017). Bioresource Technology Degradation of sulfamethoxazole in bioelectrochemical system with power supplied by constructed wetland-coupled microbial fuel cells. Bioresource Technology, 244(May), 345–352. https://doi.org/10.1016/j.biortech.2017.07.143

Zhang, Y., Liu, M., Zhou, M., Yang, H., Liang, L., & Gu, T. (2019). Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production : Synergistic e ff ects , mechanisms and challenges. Renewable and Sustainable Energy Reviews, 103(November 2018), 13–29. https://doi.org/10.1016/j.rser.2018.12.027