UNA REVISIÓN SOBRE LAS VARIACIONES HISTÓNICAS Y LA REGULACIÓN DE LA EXPRESIÓN GÉNICA

Contenido principal en artículo

Darío Arízala-Quinto Fabio Idrovo-Espín

Resumen

El nucleosoma es una estructura formada por un octámero de histonas H2A, H2B, H3 y H4 alrededor del cual se enrolla el ADN, en algunos casos pueden presentarse variantes histónicas que cambian dramáticamente las propiedades del nucleosoma, así como también su interacción con el ADN. Estas variantes, que ocurren de forma natural en los organismos, forman parte de la epigenética, la misma que se refiere al estudio de la regulación de la expresión génica sin la alteración de las secuencias genómicas de los mismos. Esta revisión identifica algunos aspectos sobre las variantes histónicas y su forma singular de regular la expresión génica, temas que actualmente son motivo de numerosas investigaciones alrededor del mundo.

Detalles del artículo

Cómo citar
ARÍZALA-QUINTO, Darío; IDROVO-ESPÍN, Fabio. UNA REVISIÓN SOBRE LAS VARIACIONES HISTÓNICAS Y LA REGULACIÓN DE LA EXPRESIÓN GÉNICA. infoANALÍTICA, [S.l.], v. 8, n. 1, p. 17-35, ene. 2020. ISSN 2602-8344. Disponible en: <http://infoanalitica-puce.edu.ec/index.php/infoanalitica/article/view/116>. Fecha de acceso: 03 abr. 2020 doi: https://doi.org/10.26807/ia.v8i1.116.
Sección
Artículos de revisión

Citas

Adalsteinsson, B. T., & Ferguson-Smith, A. C. (2014). Epigenetic control of the genome-lessons from genomic imprinting. Genes, 5(3), 635–655. doi:10.3390/genes5030635.
Ausió, J. (2015). The shades of gray of the chromatin fiber: recent literature provides new insights into the structure of chromatin. Bioessays, 37(1):46-51. doi: 10.1002/bies.201400144
Bönisch, C., & Hake, S. B. (2012). Histone H2A variants in nucleosomes and chromatin: more or less stable?. Nucleic acids research, 40(21), 10719–10741. doi:10.1093/nar/gks865
Cedar, H., Bergman, Y. (2011). Epigenetics of haematopoietic cell development. Nat Rev Immunol, 11:478-488.
Cheema, M. S., & Ausió, J. (2015). The Structural Determinants behind the Epigenetic Role of Histone Variants. Genes, 6(3), 685–713. doi:10.3390/genes6030685
Duan, J., Zhu, L., Dong, H., Zheng, X., Jiang, Z., Chen, J., & Tian, X. C. (2019). Analysis of mRNA abundance for histone variants, histone- and DNA-modifiers in bovine in vivo and in vitro oocytes and embryos. Scientific reports, 9(1), 1217. doi:10.1038/s41598-018-38083-4
Hayakawa, K., Ohgane, J., Tanaka, S., Yagi, S., & Shiota, K. (2012). Oocyte-specific linker histone H1foo is an epigenomic modulator that decondenses chromatin and impairs pluripotency. Epigenetics, 1029–1036. doi:10.4161/epi.21492.
Hergeth, S. P., & Schneider, R. (2015). The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO reports, 16(11), 1439–1453. doi:10.15252/embr.201540749.
Hu, Z., Zhou, J., Jiang, J., Yuan, J., Zhang, Y., Wei, X., … Zhang, L. (2019). Genomic characterization of genes encoding histone acetylation modulator proteins identifies therapeutic targets for cancer treatment. Nature communications, 10(1), 733. doi:10.1038/s41467-019-08554-x
Kumar, S. V., Lucyshyn, D., Jaeger, K. E., Alós, E., Alvey, E., Harberd, N. P., & Wigge, P. A. (2012). Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 484(7393), 242–245. doi:10.1038/nature10928.
Kumar, S., & Wigge, P. (2010). H2A.Z-Containing Nucleosomes Mediate the Thermosensory Response in Arabidopsis. Cell, 140:136-147.
Kujirai, T., Horikoshi, N., Sato, K., Maehara, K., Machida, S., Osakabe, A., … Kurumizaka, H. (2016). Structure and function of human histone H3.Y nucleosome. Nucleic acids research, 44(13), 6127–6141. doi:10.1093/nar/gkw202
Lauria, M., Rossi.,V. (2011) Epigenetic control of gene regulation in plants. Biochim Biophys, 809:369–78.
Lee, J., Park, H. S., Kim, H. H., Yun, Y. J., Lee, D. R., & Lee, S. (2009). Functional polymorphism in H2BFWT-5'UTR is associated with susceptibility to male infertility. Journal of cellular and molecular medicine, 13(8B), 1942–1951. doi:10.1111/j.1582-4934.2009.00830.x
Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R., & Misteli, T. (2011). Epigenetics in alternative pre-mRNA splicing. Cell, 144(1), 16–26. doi:10.1016/j.cell.2010.11.056
Luger, K., Mäder, A., Richmond, R., Sargent D., Richmond, T. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648):251–60.
Margueron, R., & Reinberg, D. (2010). Chromatin structure and the inheritance of epigenetic information. Nature reviews. Genetics, 11(4), 285–296. doi:10.1038/nrg2752.
Maze, I., Noh, K. M., & Allis, C. D. (2013). Histone regulation in the CNS: basic principles of epigenetic plasticity. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 38(1), 3–22. doi:10.1038/npp.2012.124.
Millar, C. (2013). Organizing the genome with H2A histone variants. Biochem J, 449:567-579.
Peleg, S., Feller, C., Ladurner, A., & Imhof, A. (2016). The Metabolic Impact on Histone Acetylation and Transcription in Ageing. Trends Biochem Sci, 41(8):700-711. doi: 10.1016/j.tibs.2016.05.008.
Picchi, G., Zulkievics, V., Krieger, M., Zanchin, N., Goldberg, S., & de Godoy L. (2017). Post-translational modifications of Trypanosoma cruzi canonical and variant histones. J. Proteome Res, 3;16(3):1167-1179.
Ray-Gallet, D., & Almouzni G. (2010). Nucleosome dynamics and histone variants. Essays Biochem, 48:75-87
Santoro, S. W., & Dulac, C. (2015). Histone variants and cellular plasticity. Trends in genetics: TIG, 31(9), 516–527. doi:10.1016/j.tig.2015.07.005.
Santoro, S. W., & Dulac, C. (2012). The activity-dependent histone variant H2BE modulates the life span of olfactory neurons. eLife, 1, e00070. doi:10.7554/eLife.00070
Sabari, B. R., Zhang, D., Allis, C. D., & Zhao, Y. (2017). Metabolic regulation of gene expression through histone acylations. Nature reviews. Molecular cell biology, 18(2), 90–101. doi:10.1038/nrm.2016.140
Shaytan, A. K., Landsman, D., & Panchenko, A. R. (2015). Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers. Current opinion in structural biology, 32, 48–57. doi:10.1016/j.sbi.2015.02.004.
Shirakata, Y., Hiradate, Y., Inoue, H., Sato, E., & Tanemura, K. (2014). Histone h4 modification during mouse spermatogenesis. The Journal of reproduction and development, 60(5), 383–387. doi:10.1262/jrd.2014-018
Szenker, E., Boyarchuk, E., & Almouzni, G. (2014). Properties and functions of histone variants. En J. Workman J., S. Abmayr, Fundamentals of Chromatin (págs. 375-426.). New York: Springer.
Stein, E. M., Garcia-Manero, G., Rizzieri, D. A., Tibes, R., Berdeja, J. G., Savona, M. R., … Tallman, M. S. (2018). The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood, 131(24), 2661–2669. doi:10.1182/blood-2017-12-818948.
Skene, P., & Henikoff, S. (2013). Histone variants in pluripotency and disease. Development, 2513–2524. doi:10.1242/dev.091439.
Springer, N., & Kaeppler, S. (2009) Epigenetics. The Second Genetic Code. En D. Sparks, Advances in Agronomy 100, (págs. 59-80). San Diego: Academic Press.
Tachiwana, H., Kagawa, W., Shiga, T., Osakabe, A., Miya, Y., Saito, K., … Kurumizaka, H. (2011). Crystal structure of the human centromeric nucleosome containing CENP-A. Nature, 476(7359), 232–235. doi:10.1038/nature10258
Talbert, P., & Henikoff S. (2010) Histone variants ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol, 11:264-275.
Tammen, S. A., Friso, S., & Choi, S. W. (2013). Epigenetics: the link between nature and nurture. Molecular aspects of medicine, 34(4), 753–764. doi:10.1016/j.mam.2012.07.018.
Tarakhovsky, A. (2010) Tools and landscapes of epigenetics. Nat Immunol, 11:565-568.
Terme, J. M., Sesé, B., Millán-Ariño, L., Mayor, R., Izpisúa Belmonte, J. C., Barrero, M. J., & Jordan, A. (2011). Histone H1 variants are differentially expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency. The Journal of biological chemistry, 286(41), 35347–35357. doi:10.1074/jbc.M111.281923
Tost J. (2009) DNA Methylation: An Introduction to the Biology and the Disease-Associated Changes of a Promising Biomarker. En C. Tost DNA Methylation Methods and Protocols. (págs. 4-5). New York: Humana Press.
Vijayaraghavalu, S., & Labhasetwar, V. (2018). Nanogel-mediated delivery of a cocktail of epigenetic drugs plus doxorubicin overcomes drug resistance in breast cancer cells. Drug delivery and translational research, 8(5), 1289–1299. doi:10.1007/s13346-018-0556-y.
Vardabasso, C., Hasson, D., Ratnakumar, K., Chung, C. Y., Duarte, L. F., & Bernstein, E. (2014). Histone variants: emerging players in cancer biology. Cellular and molecular life sciences: CMLS, 71(3), 379–404. doi:10.1007/s00018-013-1343.
Volle, C., & Dalal, Y. (2014). Histone variants: the tricksters of the chromatin world. Current opinion in genetics & development, 25, 8–138. doi:10.1016/j.gde.2013.11.006
Waddington, C. (1942). The epigenotype. Endeavour, 1, 18–20.
Weber, C. M., & Henikoff, S. (2014). Histone variants: dynamic punctuation in transcription. Genes & development, 28(7), 672–682. doi:10.1101/gad.238873.114.
Wiedemann, S., Mildner, S., Bönisch, C., Israel, L., Maiser, A., Matheisl S., Straub, T,. Merkl R., Leonhardt H., Kremmer, E., Schermelleh, L., & Hake, S. (2010). Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. J Cell Biol, 190:777-791.
Zink, L., & Hake, S. (2016) Histone variants: Nuclear function and disease. Curr Opin Genetics Dev, 37:82-89