NANOTECNOLOGÍA APLICADA EN MATERIALES REFRACTARIOS: UNA REVISIÓN
Contenido principal del artículo
Resumen
Los materiales refractarios son de gran importancia para la humanidad, debido a su capacidad de resistir altas temperaturas. Son empleados en la industria del cemento, cerámica, vidrio, metalúrgica, siderúrgica y petroquímica. La mayor preocupación a nivel industrial, es que los materiales refractarios son sometidos a varios mecanismos de desgaste durante el proceso de producción, tales como: ataque químico, mecánico, termomecánico y carga térmica. Si el material no cuenta con las propiedades adecuadas, su durabilidad se verá afectada, y por ende los costos de producción. En este sentido la combinación de los nanomateriales, se convierte en una importante alternativa para mejorar las propiedades de los materiales refractarios, proporcionándoles mejor densidad, baja porosidad, resistencia a la erosión, baja conductividad térmica, entre otras. El presente artículo realiza una revisión de varios trabajos de investigación, acerca de la evolución de los nanomateriales aplicados a los materiales refractarios, entre los que se mencionan el uso de grafeno, dióxido de titanio, óxido férrico, magnesia, zirconia, alúmina y sílice, para mejorar las propiedades físicas de los materiales refractarios. De manera general, los estudios demuestran que el uso de los nanomateriales, provee a los materiales refractarios mejores propiedades, en rangos de concentración específicos. Sin embargo, todos los estudios han sido realizados a nivel de laboratorio, por lo que sería promisorio su uso a nivel industrial.
Descargas
Detalles del artículo
- Los autores se comprometen a respetar la información académica de otros autores, y a ceder los derechos de autor a la Revista infoANALÍTICA, para que el artículo pueda ser editado, publicado y distribuido.
- El contenido de los artículos científicos y de las publicaciones que aparecen en la revista es responsabilidad exclusiva de sus autores. La distribución de los artículos publicados en la Revista infoANALÍTICA se realiza bajo una licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
Citas
Al-Nemrawi, N. K., AbuAlSamen, M. M., & Alzoubi, K. H. (2019). Awareness about nanotechnology and its applications in drug industry among pharmacy students. Currents in Pharmacy Teaching and Learning, 0–1. https://doi.org/10.1016/j.cptl.2019.12.003
Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271(5251), 933–937. https://doi.org/10.1126/science.271.5251.933
Alvarez, C., Criado, E., & Baudin, C. (1992). Refractarios de magnesia-grafito. In BOL. SOC. ESP. CERAM. VIDR (Vol. 31).
Andrade-Guel, M. L., Cabello-Alvarado, C. J., & Ávila-Orta, C. A. (2019). Dióxido de zirconio: alternativas de síntesis y aplicaciones biomédicas. Retrieved February 9, 2020, from CienciaUAT website: http://www.revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/1152/591
Aneziris, C. G., Hubálková, J., & Barabás, R. (2007). Microstructure evaluation of MgO-C refractories with TiO2- and Al-additions. Journal of the European Ceramic Society, 27(1), 73–78. https://doi.org/10.1016/j.jeurceramsoc.2006.03.001
Azhari, A., Golestani-Fard, F., & Sarpoolaky, H. (2009). Effect of nano iron oxide as an additive on phase and microstructural evolution of Mag-Chrome refractory matrix. Journal of the European Ceramic Society, 29(13), 2679–2684. https://doi.org/10.1016/j.jeurceramsoc.2009.03.032
Bag, M., Adak, S., & Sarkar, R. (2012). Study on low carbon containing MgO-C refractory: Use of nano carbon. Ceramics International, 38(3), 2339–2346. https://doi.org/10.1016/j.ceramint.2011.10.086
Bhattacharya, P., Swain, S., Giri, L., & Neogi, S. (2019). Fabrication of magnesium oxide nanoparticles by solvent alteration and their bactericidal applications. Journal of Materials Chemistry B, 7(26), 4141–4152. https://doi.org/10.1039/c9tb00782b
Bouafia, A., & Laouini, S. E. (2020). Green synthesis of iron oxide nanoparticles by aqueous leaves extract of Mentha Pulegium L.: Effect of ferric chloride concentration on the type of product. Materials Letters, 265, 127364. https://doi.org/10.1016/j.matlet.2020.127364
Carlucci, C., Conciauro, F., Scremin, B. F., Antico, A. G., Muscogiuri, M., Sibillano, T., … Ciccarella, G. (2015). Properties of aluminosilicate refractories with synthesized boron-modified TiO 2 nanocrystals. Nanomaterials and Nanotechnology, 5(1), 1–7. https://doi.org/10.5772/60204
Chandra, H., Kumari, P., Bontempi, E., & Yadav, S. (2020). Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology, 101518. https://doi.org/10.1016/j.bcab.2020.101518
Chen, M., Lu, C., & Yu, J. (2007). Improvement in performance of MgO-CaO refractories by addition of nano-sized ZrO2. Journal of the European Ceramic Society, 27(16), 4633–4638. https://doi.org/10.1016/j.jeurceramsoc.2007.04.001
Dehsheikh, H. G., Ghasemi-Kahrizsangi, S., Karamian, E., & Nemati, A. (2019). Recent Advancement in monolithic refractories via application of Nanotechnology ``A review Paper’’. Journal of Nanoanalysis, 6(1), 1–20. https://doi.org/10.22034/jna.2019.664385
Efaw, C. M., Vandegrift, J. L., Reynolds, M., Jaques, B. J., Hu, H., Xiong, H., & Hurley, M. F. (2020). Characterization of zirconium oxides part II: New insights on the growth of zirconia revealed through complementary high-resolution mapping techniques. Corrosion Science, 108491. https://doi.org/10.1016/j.corsci.2020.108491
Fu, L., Gu, H., Huang, A., Zhang, M., & Wu, J. (2020). Fabrication of CaO–MgO–Al2O3 materials from metallurgical waste industrial residue and their potential usage in MgO–C refractories. Ceramics International, 46(1), 959–967. https://doi.org/10.1016/j.ceramint.2019.09.057
García, D. (2016). Estudio del daño por contacto de materiales compuesto cerámica/ grafeno.
Ghasemi-Kahrizsangi, S., Barati Sedeh, M., Gheisari Dehsheikh, H., Shahraki, A., & Farooghi, M. (2016). Densification and properties of ZrO2 nanoparticles added magnesia–doloma refractories. Ceramics International, 42(14), 15658–15663. https://doi.org/10.1016/j.ceramint.2016.07.021
Ghasemi-Kahrizsangi, S., Gheisari Dehsheikh, H., Karamian, E., Ghasemi-Kahrizsangi, A., & Vahid Hosseini, S. (2017). The influence of Al2O3 nanoparticles addition on the microstructure and properties of bauxite self–flowing low-cement castables. Ceramics International, 43(12), 8813–8818. https://doi.org/10.1016/j.ceramint.2017.04.013
Güeto, J. M. (2010). Tecnología de los materiales cerámicos. Retrieved February 8, 2020, from Google Libros website: https://books.google.com.ec/books?id=4H6OXgN1w6wC&printsec=frontcover&dq=material+refractarios+pdf&hl=es-419&sa=X&ved=0ahUKEwiLueeUscPnAhWro1kKHUJIAb8Q6AEIMjAB#v=onepage&q&f=false
Hancock, D., Homfray, D., Porton, M., Todd, I., & Wynne, B. (2018). Refractory metals as structural materials for fusion high heat flux components. Journal of Nuclear Materials, 512, 169–183. https://doi.org/10.1016/j.jnucmat.2018.09.052
Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019, October 1). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, Vol. 53. https://doi.org/10.1016/j.jddst.2019.101174
Khalilpourazary, S., & Salehi, J. (2019). How alumina nanoparticles impact surface characteristics of Al7175 in roller burnishing process. Journal of Manufacturing Processes, 39, 1–11. https://doi.org/10.1016/j.jmapro.2019.01.027
Khoroshavin, L. B., & Perepelitsyn, V. A. (1999). On the nanotechnology of refractories. Refractories and Industrial Ceramics, 40(11–12), 553–557. https://doi.org/10.1007/BF02762640
Kim, B., Song, J., Kim, J. Y., Hwang, J., & Park, D. (2019). The control of particle size distribution for fabricated alumina nanoparticles using a thermophoretic separator. Advanced Powder Technology, 30(10), 2094–2100. https://doi.org/10.1016/j.apt.2019.06.023
Kim, E. H., Cho, G. H., Lim, H. T., Byeun, Y. K., & Jung, Y. G. (2015). Development of MgO-C refractory having high oxidation resistance by metal coating process. Journal of Nanoscience and Nanotechnology, 15(1), 514–517. https://doi.org/10.1166/jnn.2015.8338
Kim, H., Jeon, D., Oh, S., Nam, K. S., Son, S., Chan Gye, M., & Shin, I. (2019). Titanium dioxide nanoparticles induce apoptosis by interfering with EGFR signaling in human breast cancer cells. Environmental Research, 175, 117–123. https://doi.org/10.1016/j.envres.2019.05.001
Kim, W., Oh, H. S., & Shon, I. J. (2015). The effect of graphene reinforcement on the mechanical properties of Al2O3 ceramics rapidly sintered by high-frequency induction heating. International Journal of Refractory Metals and Hard Materials, 48, 376–381. https://doi.org/10.1016/j.ijrmhm.2014.10.011
Kumar, K., Singh, R. K., & Datta, R. (2017). Water wettable graphite through nanotechnology and its application in refractories. InterCeram: International Ceramic Review, 66(1–2), 30–35. https://doi.org/10.1007/bf03401199
Li, X. Q., Elliott, D. W., & Zhang, W. X. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31(4), 111–122. https://doi.org/10.1080/10408430601057611
Li, X., & Zhi, L. (2018, May 7). Graphene hybridization for energy storage applications. Chemical Society Reviews, Vol. 47, pp. 3189–3216. https://doi.org/10.1039/c7cs00871f
Liu, J., Yan, H., Reece, M. J., & Jiang, K. (2012). Toughening of zirconia/alumina composites by the addition of graphene platelets. Journal of the European Ceramic Society, 32(16), 4185–4193. https://doi.org/10.1016/j.jeurceramsoc.2012.07.007
Manivasakan, P., Rajendran, V., Rauta, P. R., Sahu, B. B., Sahu, P., Panda, B. K., … Jegadesan, S. (2010). Effect of TiO2 nanoparticles on properties of silica refractory. Journal of the American Ceramic Society, 93(8), 2236–2243. https://doi.org/10.1111/j.1551-2916.2010.03727.x
Menon, P. K., Sharma, A., Lafuente, J. V., Muresanu, D. F., Aguilar, Z. P., Wang, Y. A., … Sharma, H. S. (2017). Intravenous Administration of Functionalized Magnetic Iron Oxide Nanoparticles Does Not Induce CNS Injury in the Rat: Influence of Spinal Cord Trauma and Cerebrolysin Treatment. In International Review of Neurobiology (Vol. 137, pp. 47–63). https://doi.org/10.1016/bs.irn.2017.08.005
Morales, M. E., Castán, H., Ortega, E., & Ruiz, M. A. (2019). Silica Nanoparticles: Preparation, Characterization and Applications in Biomedicine. Pharmaceutical Chemistry Journal, 53(4), 329–336. https://doi.org/10.1007/s11094-019-02001-3
Moreno, L. M. V. (2008). Materiales industriales. Teoría y aplicaciones. Retrieved February 8, 2020, from Google Libros website: https://books.google.com.ec/books?id=VSdtMx8Oj8wC&pg=PA131&dq=material+refractarios+pdf&hl=es-419&sa=X&ved=0ahUKEwiLueeUscPnAhWro1kKHUJIAb8Q6AEIOzAC#v=onepage&q=material refractarios pdf&f=false
Nouri-Khezrabad, M., Braulio, M. A. L., Pandolfelli, V. C., Golestani-Fard, F., & Rezaie, H. R. (2013). Nano-bonded refractory castables. Ceramics International, 39(4), 3479–3497. https://doi.org/10.1016/j.ceramint.2012.11.028
Nyamukamba, P., Okoh, O., Mungondori, H., Taziwa, R., & Zinya, S. (2018). Synthetic Methods for Titanium Dioxide Nanoparticles: A Review. In Titanium Dioxide - Material for a Sustainable Environment. https://doi.org/10.5772/intechopen.75425
Pham, M. H., Khazaeli, A., Godbille-Cardona, G., Truica-Marasescu, F., Peppley, B., & Barz, D. P. J. (2020). Printing of graphene supercapacitors with enhanced capacitances induced by a leavening agent. Journal of Energy Storage, 28. https://doi.org/10.1016/j.est.2020.101210
Roberts, S. J., Dodson, J. J., Carpinone, P. L., & Hagelin-Weaver, H. E. (2015). Evaluation of nanoparticle zirconia supports in the thermochemical water splitting cycle over iron oxides. International Journal of Hydrogen Energy, 40(46), 15972–15984. https://doi.org/10.1016/j.ijhydene.2015.09.109
Roungos, V., & Aneziris, C. G. (2012). Improved thermal shock performance of Al 2O 3-C refractories due to nanoscaled additives. Ceramics International, 38(2), 919–927. https://doi.org/10.1016/j.ceramint.2011.08.011
Roy, J., Chandra, S., & Maitra, S. (2019). Nanotechnology in castable refractory. Ceramics International, 45(1), 19–29. https://doi.org/10.1016/j.ceramint.2018.09.261
Serve, A., Boreave, A., Cartoixa, B., Pajot, K., & Vernoux, P. (2019). Synergy between Ag nanoparticles and yttria-stabilized zirconia for soot oxidation. Applied Catalysis B: Environmental, 242, 140–149. https://doi.org/10.1016/j.apcatb.2018.09.069
Sezavar, A., Zebarjad, S., & Sajjadi, S. (2015). A Study on the Effect of Nano Alumina Particles on Fracture Behavior of PMMA. Technologies, 3(2), 94–102. https://doi.org/10.3390/technologies3020094
Sigwadi, R., Mokrani, T., & Dhlamini, M. (2019). The synthesis, characterization and electrochemical study of zirconia oxide nanoparticles for fuel cell application. Physica B: Condensed Matter. https://doi.org/10.1016/j.physb.2019.411842
Thakur, B. K., Kumar, A., & Kumar, D. (2019). Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. South African Journal of Botany, 124, 223–227. https://doi.org/10.1016/j.sajb.2019.05.024
Tiwari, S. K., Sahoo, S., NannanWang, & Huczko, A. (2020). Graphene Research and their Outputs: Status and Prospect. Journal of Science: Advanced Materials and Devices. https://doi.org/10.1016/j.jsamd.2020.01.006
Wang, Q., Li, Y., Luo, M., Sang, S., Zhu, T., & Zhao, L. (2014). Strengthening mechanism of graphene oxide nanosheets for Al 2O3-C refractories. Ceramics International, 40(1 PART A), 163–172. https://doi.org/10.1016/j.ceramint.2013.05.117
William D. Callister. (2002). Introducción a la ciencia e ingeniería de los materiales. Retrieved February 8, 2020, from Google libros website: https://books.google.com.ec/books?id=gnfPV1txXiUC&pg=PA445&dq=MATERIAL+REFRACTARIOS&hl=es-419&sa=X&ved=0ahUKEwjWmZSdhsDnAhWRnFkKHaLjB50Q6AEIMTAB#v=onepage&q&f=false
Wu, D. Y., Zhou, W. H., He, L. Y., Tang, H. Y., Xu, X. H., Ouyang, Q. S., & Shao, J. J. (2020). Micro-corrugated graphene sheet enabled high-performance all-solid-state film supercapacitor. Carbon, 160, 156–163. https://doi.org/10.1016/j.carbon.2020.01.019
Zakaria, M. B., Malgras, V., Nagata, T., Kim, J., Bando, Y., Fatehmulla, A., … Lin, J. (2019). Gold nanoparticles anchored on mesoporous zirconia thin films for efficient catalytic oxidation of carbon monoxide at low temperatures. Microporous and Mesoporous Materials, 288. https://doi.org/10.1016/j.micromeso.2019.05.055
Zamani, H., Jafari, A., Mousavii, S. M., & Darezereshki, E. (2020). Biosynthesis of silica nanoparticle using Saccharomyces cervisiae and its application on enhanced oil recovery. Journal of Petroleum Science and Engineering, 107002. https://doi.org/10.1016/j.petrol.2020.107002
Zou, L., Guo, J., Liu, J., Zou, Z., Akins, D. L., & Yang, H. (2014). Highly alloyed PtRu black electrocatalysts for methanol oxidation prepared using magnesia nanoparticles as sacrificial templates. Journal of Power Sources, 248, 356–362. https://doi.org/10.1016/j.jpowsour.2013.09.086