Fotoelectroquímica en sistemas nanoestructurados: una discusión desde sus límites naturales

Contenido principal del artículo

Ronald Vargas
https://orcid.org/0000-0002-4890-8187
Dalia León
Daniel Torres
Alberto Maimone
Franco M. Cabrerizo
Lorean Madriz

Resumen

Luego de reconocer que la respuesta fotoelectroquímica depende de la yuxtaposición de fenómenos de transferencia y de recombinación de las cargas fotogeneradas, y que dichos procesos representan límites naturales al comportamiento experimental, se discutieron algunos aspectos fisicoquímicos que determinan el desempeño de una interfase semiconductor | electrolito, considerando específicamente la situación de un fotoánodo nanoestructurado. Se tomó como caso de estudio la relación entre la respuesta experimental de transferencia electrónica y la recombinación en nanotubos de TiO2, presentando estos, una modificación en la relación de fases anatasa y rutilo. Mediante el análisis de la respuesta potenciodinámica a elevados sobrepotenciales en relación a la teoría de Gärtner, además de, la cuantificación del tiempo de vida de portadores debido al decaimiento fotoluminiscente a circuito abierto (bajo sobrepotencial), resultó posible ilustrar la relación cualitativa entre la cinética de transferencia de carga y la desactivación, procesos que, siendo opuestos, determinan la respuesta de estos fotoánodos nanoestructurados.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Sección
Artículos de revisión

Citas

Bao, N., Feng, X., & Grimes, C. (2012). Self-organized one-dimensional TiO2 nanotube/nanowire array films for use in excitonic solar cells: A review. Journal of Nanotechnology, Volume 2012, 645931.

Berger, T., Monllor-Satoca, D., Jankulovska, M., Lana-Villareal, T., & Gómez, R. (2012). The electrochemistry of nanostructured titanium dioxide electrodes. ChemPhysChem, 13,2824-2875.

Bertoluzzi, L., Badia-Bou, L., Fabregat-Santiago, F., Gimenez, S., & Bisquert, J. (2013). Interpretation of cyclic voltammetry measurements of thin semiconductor films for solar fuel applications. Journal of Physical Chemistry Letters, 4(8),1334-1339.

Bisquert, J. (2003). Chemical capacitance of nanoestructured semiconductors: its origin and significance for nanocomposite solar cells. Physical Chemistry Chemical Physics, 5, 5360-5364.

Bisquert, J. (2017). Nanostructured energy devices: Foundations of carrier transport. Boca Raton: CRC Press. Taylor & Francis Group.

Fabregat-Santiago, F., Mora-Seró, I., García-Belmonte, G., & Bisquert, J. (2003). Cyclic voltammetry studies of nanoporous semiconductors. Capacitive and reactive properties of nanocrystalline TiO2 electrodes in aqueous electrolyte. Journal of Physical Chemistry B, 107, 758-768.

Fountaine, K., Lewerenz, H., & Atwater, H. (2020). Efficiency limits for photoelectrochemical water-splitting. Nature Communications, 7, 13706.

Garcia-Segura, S., & Brillas, E. (2017). Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 31, 1-35.

Gärtner, W. (1959). Depletion-layer photoeffects in semiconductors. Physical Review, 116(1), 84-89.

Gerischer, H. (1990). The impact of semiconductors on the concepts of electrochemistry. Electrochimica Acta, 35(11-12), 1677-1699.

Gilliland, G.D. (1997). Photoluminescence spectroscopy of crystalline semiconductors. Materials Science and Engineering, R18, 99-400.

Gutiérrez, M., Martín, C., Souza, B.E.,Van der Auweraer, M., Hofkens, J., & Tan, J.C. (2020) Highly luminescent silver-based MOFs: Scalable eco-friendly synthesis paving the way for photonics sensors and electroluminescent devices. Applied Materials Today, 21, 100817.

He, Y., Chen, R., Fa, W., Zhang, B., & Wang, D. (2019) Surface chemistry and photoelectrochemistry-Case study on tantalum nitride. The Journal of Chemical Physics, 151, 130902(1-11).

Kim, J.Y., Lee, J.-W., Jung, H.S., Shin, H., & Park., N.G.(2020). High-Efficiency perovskite solar cells. Chemical Reviews, 120, 7867-7918.

Kumaravel, V., Mathew, S., Bartlett, J., & Pillai, S. C. (2019). Photocatalytic hydrogen production using doped TiO2: A review of recent advances. Applied Catalysis B: Environmental, 244, 1021-1064.

Kokkinos, C.,& Economou, A.(2020). Recent advances in voltammetric, amperometric and ion-selective (bio)sensors fabricated by microengineering manufacturing approaches. Current Opinion in Electrochemistry, 23 21–25.

Lee, K., Mazare, A., & Schmuki, P. (2014). One-dimensional titanium dioxide nanomaterials: Nanotubes. Chemical Reviews, 114 (19), 9385-9454.

Leon, D. (2020). Comportamiento electroquímico de nanotubos de TiO2: relación de fases y fotooxidación de p-nitrofenol. Dissertation, (pp. 1-102). Universidad Simón Bolívar, Caracas, Venezuela.

Leon, D., Maimone, A., Carvajal, D., Madriz, L., Scharifker, B. R., Cabrerizo, F.M. & Vargas, R. (2021). Unraveling kinetic effects during photoelectrochemical mineralization of phenols. Rutile:Anatase TiO2 nanotubes photoanodes in thin-layer condition. Journal of Physical Chemistry C, 125(1), 610-617.

Lianos, P. (2017). Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Applied Catalysis B: Environmental, 210, 235-254.

Madriz, L., Tatá, J., Carvajal,D., Núñez, O., Scharifker, B.R., Mostany, J., Borrás, C., Cabrerizo, F.M., & Vargas, R. (2020). Photocatalysis and photoelectrochemical glucose oxidation on Bi2WO6: conditions for the concomitant H2 production. Renewable Energy, 152, 974-983.

Maimone, A. (2018). Relación anatasa-rutilo en nanotubos de TiO2: Aspectos termodinámicos y fotoelectroquímicos. Master Thesis, (pp. 1-163). Universidad Simón Bolívar, Caracas, Venezuela.

Maimone, A., Camero, S., & Blanco, S., (2015). Caracterización del óxido de titanio obtenido mediante tratamiento térmico y anodizado electroquímico. Revista de la Facultad de Ingeniería U.C.V, 30, 189-200.

Memming, R. (2015). Semiconductor electrochemistry. Rellingen: Wiley-VCH.

Monllor-Satoca, D., Díez-García, M. I., Lana-Villareal, T., & Gómez, R. (2020). Photoelectrocatalytic production of solar fuels with semiconductor oxides: materials, activity and modeling. Chemical Communications, 56, 12272-12289.

Naranjo, D. I., García-Vergara, S. J., & Blanco, S. (2017). Scanning electron microscopy of heat treated TiO2 nanotubes arrays obtained by anodic oxidation. Journal of Physics: Conference Series, 935, 012025.

Nevaréz-Martínez, M.C., Mazierki, P., Kobylanski, M.P., Szczepanska, G., Trykowski, G., Malankowska, A., Kozaz, M., Espinoza-Montero, P., & Zaleska-Medynska, A. (2018). Growth, structure and photocatalytic properties of hierarchical V2O5-TiO2 nanotube arrays obtained from the one-step anodic oxidation of Ti-V alloys. Molecules, 22, 580.

Oliva, F.Y., Avalle, L.B., Santos, E., & Cámara, O.R., (2002). Photoelectrochemical characterization of nanocrystalline TiO2 films on titanium substrates, Journal of Photochemistry and Photobiology A: Chemistry, 146, 175-188.

Pellet, N., Giordano, F., Zakeeruddin, S, M. & Grätzel, M. (2019). Device and method for performing maximum power point tracking for photovoltaic devices in presence of hysteresis. US Patent, 10, 488, 879.

Peter, L. (2013). Kinetics and mechanisms of light-driven reactions at semiconductor electrodes: Principles and techniques. En: Lewerenz. H-J., & Peter. L. (Eds.). Photoelectrochemical Water Spliting. Materials, processes and architectures. (pp. 19-51). Cambridge: RSC Energy & Environmental Series.

Peter, L., Gurudayal., Wong, L. H., & Abdi, F. F. (2018). Understanding the role of nanoestructuring in photoelectrode performance for light-driven water splitting. Journal of Electroanalytical Chemistry, 819,447-458.

Peter, L. M., Ponomarev, E. A., & Fermín, D. J. (1997). Intensity-modulated photocurrent spectroscopy: Reconciliation of phenomenological analysis with multistep electron transfer mechanisms. Journal of Electroanalytical Chemistry, 427(1-2), 79-96.

Qian, R., Zong, H., Schneider, J., Zhou, G., Zhao, T., Li, Y., Yang, J., Bahnemann, D.W., & Pan, J.(2019). Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catalysis. Today,335, 78-90.

Reichman, J. (1980). The current-voltage characteristics of semiconductors-electrolyte junction photovoltaic cells. Applied Physics Letters,36(7), 574-577.

Rueda, H., Becerra, J., & Blanco, S. (2018). Effect of the oxygen diffusion in the anatase-rutile transformation in a TiO2 nanotubes array obtained by electrochemical anodization. Journal of Physics: Conference Series, 1119, 012026 (1-6).

Sato, N. (1998). Electrochemistry at metal and semiconductor electrodes. Richmond: Elsevier Science B. V.

Smandek, B., Chmiel, G., & Gerischer, H., (1989). Photoluminescence as an in-situ technique to determine solid state and surface properties of semiconductors in an electrochemical cell - application of the “Dead Layer Model”. Berichte der Bunsengesellschaft für physikalische Chemie, 93, 1094-1103.

Vargas, R., Carvajal, D., Galavis, B., Maimone, A., Madriz, L., & Scharifker, B.R. (2019). High-field growth of semiconducting anodic oxide films on metal surfaces for photocatalytic applications. International Journal of Photoenergy, vol.2019, (15pp).

Vargas, R., Carvajal, D., Madriz, L., & Scharifker, B. R. (2020). Chemical kinetics in solar to chemical energy conversion: the photoelectrochemical oxygen transfer reaction. Energy Reports, 6,2-12.

Wakabayashi, K., Yamaguchi, Y., Sekiya, T., & Kurita, S. (2005). Time-resolved luminescence spectra in colorless anatase TiO2 single crystal. Journal of Luminescense, 112, 50-53.

Yurdakal, S., Garlisi, C., Ozcan, L., Bellardita, M., & Palmisano, G., (2019). (Photo)catalysis characterization techniques: Adsorption isotherms and BET, SEM, FTIR, UV-Vis, Photoluminescence and Electrochemical characterizations. In: Marcí, G.& Palmisano, L., (Eds.). Heterogeneous photocatalysis. Relationships with heterogeneous catalysis and perspectives (pp. 87-152). Amsterdam: Elsevier.

Zhang, Q., Celorio, V., Bradley, K., Eisner, F., Cherns, D., Yan, E., & Fermín, D. (2014). Density of deep trap states in oriented TiO2 nanotube arrays. Journal of Physical Chemistry C, 118(31), 18207-18213.