Revisión de la actividad antiviral in vitro de plantas sudamericanas a propósito del coronavirus SARS-CoV-2
Contenido principal del artículo
Resumen
La alerta por la pandemia causada por el coronavirus SARS-CoV-2 ha desatado una carrera contra el tiempo por búsqueda de un posible tratamiento. Varios fármacos antivirales empleados para controlar el desarrollo de la enfermedad, son derivados de moléculas obtenidas de plantas, sin embargo, su aislamiento puede resultar en la disminución o anulación del efecto. El uso de plantas ancestrales en países en vías de desarrollo, donde el acceso a un tratamiento farmacológico específico aún es limitado, las terapias naturales representan la primera línea de defensa frente al virus. En el presente estudio, se analizaron varias investigaciones respecto a la actividad in vitro de plantas sudamericanas con potencial actividad antiviral, clasificadas por países (Argentina, Brasil, Bolivia, Chile, Colombia, Ecuador, Paraguay, Perú, Uruguay y Venezuela). La familia Asteraceae presentó el mayor porcentaje de uso para el tratamiento de enfermedades respiratorias con un 18 %. Se concluye que la biodiversidad de plantas sudamericanas puede ser aprovechada, por lo que se sugiere realizar un estudio in vitro sobre el virus SARS-CoV-2.
Descargas
Detalles del artículo
- Los autores se comprometen a respetar la información académica de otros autores, y a ceder los derechos de autor a la Revista infoANALÍTICA, para que el artículo pueda ser editado, publicado y distribuido.
- El contenido de los artículos científicos y de las publicaciones que aparecen en la revista es responsabilidad exclusiva de sus autores. La distribución de los artículos publicados en la Revista infoANALÍTICA se realiza bajo una licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
Citas
Abad, M J, Bermejo, P., Sanchez Palomino, S., Chiriboga, X., & Carrasco, L. (1999). Antiviral activity of some South American medicinal plants. Phytotherapy Research, 13(2), 142–146. https://doi.org/10.1002/(SICI)1099-1573(199903)13:2<142::AID-PTR392>3.0.CO;2-7
Abad, María José, Bermejo, P., Gonzales, E., Iglesias, I., Irurzun, A., & Carrasco, L. (1999). Antiviral activity of Bolivian plant extracts. General Pharmacology, 32(4), 499–503. https://doi.org/10.1016/S0306-3623(98)00214-6
Abdel-Malek, S., Bastien, J. W., Mahler, W. F., Jia, Q., Reinecke, M. G., Robinson, W. E., Shu, Y. H., & Zalles-Asin, J. (1996). Drug leads from the Kallawaya herbalists of Bolivia. 1. Background, rationale, protocol and anti-HIV activity. Journal of Ethnopharmacology, 50(3), 157–166. https://doi.org/10.1016/0378-8741(96)01380-3
Ali-Shtayeh, M. S., Yaniv, Z., & Mahajna, J. (2000). Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. Journal of ethnopharmacology, 73(1–2), 221–232. https://doi.org/10.1016/s0378-8741(00)00316-0
Andrade-Cetto, A. (2009). Ethnobotanical study of the medicinal plants from Tlanchinol, Hidalgo, México. Journal of Ethnopharmacology, 122(1), 163–171. https://doi.org/10.1016/j.jep.2008.12.008
Andrighetti-Fröhner, C. R., Sincero, T. C. M., Da Silva, A. C., Savi, L. A., Gaido, C. M., Bettega, J. M. R., Mancini, M., De Almeida, M. T. R., Barbosa, R. A., Farias, M. R., Barardi, C. R. M., & Simões, C. M. O. (2005). Antiviral evaluation of plants from Brazilian Atlantic Tropical Forest. Fitoterapia, 76(3–4), 374–378. https://doi.org/10.1016/j.fitote.2005.03.010
Arboleda, D., Cañas, A. L., López, A., & Forero, J. E. (2006). Evaluación de la actividad antiviral in vitro de cuatro extractos de las especies Caryodendron orinocense y Phyllanthus niruri de la familia Euphorbiaceae contra los virus herpes bovino tipo 1 y herpes simplex tipo 2 Evaluation of the in vitro antiviral activity of four extracts from the species Caryodendron orinocense AND Phyllanthus niruri from Euphorbiaceae family against herpes simplex virus type 2 and bovine herpes virus type 1.
Arboleda, D., Cañas, A., López, A., & Forero, J. (2007). Evaluación de la actividad antiviral in vitro de cuatro extractos de las especies Caryodendron orinocense y Phyllanthus niruri de la familia Euphorbiaceae contra los virus herpes bovino tipo 1 y herpes simplex tipo 2. Vitae (Medellín), 55–60.
Atta, A. H., & Alkofahi, A. (1998). Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. Journal of ethnopharmacology, 60(2), 117–124. https://doi.org/10.1016/s0378-8741(97)00137-2
Barboza, L. N., Lívero, F. A. D. R., Prando, T. B. L., Ribeiro, R. D. C. L., Lourenço, E. L. B., Budel, J. M., De Souza, L. M., Acco, A., Dalsenter, P. R., & Gasparotto, A. (2016). Atheroprotective effects of Cuphea carthagenensis (Jacq.) J. F. Macbr. in New Zealand rabbits fed with cholesterol-rich diet. Journal of Ethnopharmacology, 187, 134–145. https://doi.org/10.1016/j.jep.2016.04.027
Bastos, D. H. M., Saldanha, L. A., Catharino, R. R., Sawaya, A. C. H. F., Cunha, I. B. S., Carvalho, P. O., & Eberlin, M. N. (2007). Phenolic antioxidants identified by ESI-MS from yerba maté (Ilex paraguariensis) and green tea (Camelia sinensis) extracts. Molecules, 12(3), 423–432. https://doi.org/10.3390/12030423
Biella, C. de A., Salvador, M. J., Dias, D. A., Dias-Baruffi, M., & Pereira-Crott, L. S. (2008). Evaluation of immunomodulatory and anti-inflammatory effects and phytochemical screening of Alternanthera tenella Colla (Amaranthaceae) aqueous extracts. Memorias do Instituto Oswaldo Cruz, 103(6), 569–577. https://doi.org/10.1590/s0074-02762008000600010
Böcher, T. W. (1967). Continuous variation and taxonomy. taxon, 16(4), 255–258. https://doi.org/10.2307/1216371
Boligon, A. A., Kubiça, T. F., Mario, D. N., de Brum, T. F., Piana, M., Weiblen, R., Lovato, L., Alves, S. H., Santos, R. C. V., dos Santos Alves, C. F., & Athayde, M. L. (2013). Antimicrobial and antiviral activity-guided fractionation from Scutia buxifolia Reissek extracts. Acta Physiologiae Plantarum, 35(7), 2229–2239. https://doi.org/10.1007/s11738-013-1259-0
Boligon, A. A., Pereira, R. P., Feltrin, A. C., Machado, M. M., Janovik, V., Rocha, J. B. T., & Athayde, M. L. (2009). Antioxidant activities of flavonol derivatives from the leaves and stem bark of Scutia buxifolia Reiss. Bioresource Technology, 100(24), 6592–6598. https://doi.org/10.1016/j.biortech.2009.03.091
Boligon, A. A., Piana, M., Kubiça, T. F., Mario, D. N., Dalmolin, T. V., Bonez, P. C., Weiblen, R., Lovato, L., Alves, S. H., Campos, M. M. A., & Athayde, M. L. (2015). HPLC analysis and antimicrobial, antimycobacterial and antiviral activities of Tabernaemontana catharinensis A. DC. Journal of Applied Biomedicine, 13(1), 7–18. https://doi.org/10.1016/j.jab.2014.01.004
Bonilla-Aldana, D. K., Holguin-Rivera, Y., Cortes-Bonilla, I., Cardona-Trujillo, M. C., García-Barco, A., Bedoya-Arias, H. A., Rabaan, A. A., Sah, R., & Rodriguez-Morales, A. J. (2020). Coronavirus infections reported by ProMED, February 2000–January 2020. Travel Medicine and Infectious Disease, 101575. https://doi.org/10.1016/j.tmaid.2020.101575
Braga, F. G., Bouzada, M. L. M., Fabri, R. L., de O. Matos, M., Moreira, F. O., Scio, E., & Coimbra, E. S. (2007). Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. Journal of Ethnopharmacology, 111(2), 396–402. https://doi.org/10.1016/j.jep.2006.12.006
Brandão, G. C., Kroon, E. G., Duarte, M. G. R., Braga, F. C., de Souza Filho, J. D., & de Oliveira, A. B. (2010). Antimicrobial, antiviral and cytotoxic activity of extracts and constituents from Polygonum spectabile Mart. Phytomedicine, 17(12), 926–929. https://doi.org/10.1016/j.phymed.2010.03.004
Bussmann, R. W., & Sharon, D. (2006). Traditional medicinal plant use in Northern Peru: Tracking two thousand years of healing culture. Journal of Ethnobiology and Ethnomedicine, 2, 47. https://doi.org/10.1186/1746-4269-2-47
Calvo, C., García López-Hortelano, M., de Carlos Vicente, J. C., Vázquez Martínez, J. L., Ramos, J. T., Baquero-Artigao, F., Navarro, M. L., Rodrigo, C., Neth, O., Fumadó, V., Menendez Suso, J. J., Slocker Barrio, M., Bustinza Arriortua, A., Jordán García, I., & Pilar Orive, J. (2020). Recomendaciones sobre el manejo clínico de la infección por el «nuevo coronavirus» SARS-CoV2. Grupo de trabajo de la Asociación Española de Pediatría (AEP). Anales de Pediatría. https://doi.org/10.1016/j.anpedi.2020.02.001
Caparroz-Assef, S. M., Grespan, R., Freire Batista, R. C., Bersani-Amado, F. A., Baroni, S., Araujo Dantas, J., Nakamura Cuman, R. K., & Bersani-Amado, C. A. (2005). Toxicity studies of Cordia salicifolia extract. Acta Scientiarum - Health Sciences, 27(1), 41–44. https://doi.org/10.4025/actascihealthsci.v27i1.1439
Carlucci, M. J., Scolaro, L. A., Errea, M. I., Matulewicz, M. C., & Damonte, E. B. (1997). Antiviral activity of natural sulphated galactans on herpes virus multiplication in cell culture. Planta Medica, 63(5), 429–432. https://doi.org/10.1055/s-2006-957727
Cecílio, A. B., Faria, D. B. De, Oliveira, P. D. C., Caldas, S., Oliveira, D. A. De, Sobral, M. E. G., Duarte, M. G. R., Moreira, C. P. D. S., Silva, C. G., & Almeida, V. L. De. (2012). Screening of Brazilian medicinal plants for antiviral activity against rotavirus. Journal of Ethnopharmacology, 141(3), 975–981. https://doi.org/10.1016/j.jep.2012.03.031
Chan, J. F. W., To, K. K. W., Tse, H., Jin, D. Y., & Yuen, K. Y. (2013). Interspecies transmission and emergence of novel viruses: Lessons from bats and birds. En Trends in Microbiology (Vol. 21, Número 10, pp. 544–555). Elsevier Current Trends. https://doi.org/10.1016/j.tim.2013.05.005
Chen, H., & Du, Q. (2020). Potential natural compounds for preventing 2019-nCoV infection. Preprints.
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
Cheng, P. W., Ng, L. T., Chiang, L. C., & Lin, C. C. (2006). Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clinical and Experimental Pharmacology and Physiology, 33(7), 612–616. https://doi.org/10.1111/j.1440-1681.2006.04415.x
Chiriboga, X. (2010). Etnomedicina y etnobotánica avances en la investigación.
Chiru, T., Fursenco, C., Ciobanu, N., Dinu, M., Popescu, E., Ancuceanu, R., Volmer, D., & Raal, A. (2020). Use of medicinal plants in complementary treatment of the common cold and influenza – perception of pharmacy customers in Moldova and Romania. Journal of Herbal Medicine, 100346. https://doi.org/10.1016/j.hermed.2020.100346
Cho, K.-O., & Hoet, A. E. (2014). Toroviruses (Coronaviridae). En Reference Module in Biomedical Sciences. Elsevier. https://doi.org/10.1016/b978-0-12-801238-3.02674-x
Cotten, M., Watson, S. J., Zumla, A. I., Makhdoom, H. Q., Palser, A. L., Ong, S. H., Al Rabeeah, A. A., Alhakeem, R. F., Assiri, A., Al-Tawfiq, J. A., Albarrak, A., Barry, M., Shibl, A., Alrabiah, F. A., Hajjar, S., Balkhy, H. H., Flemban, H., Rambaut, A., Kellam, P., & Memish, Z. A. (2014). Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus. mBio, 5(1). https://doi.org/10.1128/mBio.01062-13
Cruz-Vega, D. E., Verde-Star, M. J., Salinas-González, N., Rosales-Hernández, B., Estrada-García, I., Mendez-Aragón, P., Carranza-Rosales, P., González-Garza, M. T., & Castro-Garza, J. (2008). Antimycobacterial activity of Juglans regia, Juglans mollis, Carya illinoensis and Bocconia frutescens. Phytotherapy Research, 22(4), 557–559. https://doi.org/10.1002/ptr.2343
Cryer, M., Lane, K., Greer, M., Cates, R., Burt, S., Andrus, M., Zou, J., Rogers, P., Hansen, M. D. H., Burgado, J., Satheshkumar, P. S., Day, C. W., Smee, D. F., & Johnson, F. B. (2017). Isolation and identification of compounds from Kalanchoe pinnata having human alphaherpesvirus and vaccinia virus antiviral activity. Pharmaceutical Biology, 55(1), 1586–1591. https://doi.org/10.1080/13880209.2017.1310907
de Groot, R. J., Baker, S. C., Baric, R., Enjuanes, L., Gorbalenya, A. E., Holmes, K. V, Perlman, S., Poon, L., Rottier, P. J. M., Talbot, P. J., Woo, P. C. Y., & Ziebuhr, J. (2012). Part II – The Positive Sense Single Stranded RNA Viruses Family Coronaviridae. En Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses (Número Figure 1, pp. 806–828). Elsevier. https://doi.org/10.1016/B978-0-12-384684-6.00068-9
De Riscala, E. C., Catalan, C. A. N., Sosa, V. E., Gutiérrez, A. B., & Herz, W. (1988). Trixane derivatives from Trixis praestans. Phytochemistry, 27(7), 2343–2346. https://doi.org/10.1016/0031-9422(88)80157-2
De Wit, E., Van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: Recent insights into emerging coronaviruses. En Nature Reviews Microbiology (Vol. 14, Número 8, pp. 523–534). Nature Publishing Group. https://doi.org/10.1038/nrmicro.2016.81
del Valle Mendoza, J., Pumarola, T., Gonzales, L. A., & del Valle, L. J. (2014). Antiviral activity of maca (Lepidium meyenii) against human influenza virus. Asian Pacific Journal of Tropical Medicine, 7(S1), S415–S420. https://doi.org/10.1016/S1995-7645(14)60268-6
do Nascimento, K. F., Moreira, F. M. F., Alencar Santos, J., Kassuya, C. A. L., Croda, J. H. R., Cardoso, C. A. L., Vieira, M. do C., Góis Ruiz, A. L. T., Ann Foglio, M., de Carvalho, J. E., & Formagio, A. S. N. (2018). Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. Journal of Ethnopharmacology, 210, 351–358. https://doi.org/10.1016/j.jep.2017.08.030
Duschatzky, C. B., Possetto, M. L., Talarico, L. B., García, C. C., Michis, F., Almeida, N. V, De Lampasona, M. P., Schuff, C., & Damonte, E. B. (2005). Evaluation of chemical and antiviral properties of essential oils from South American plants. Antiviral Chemistry and Chemotherapy, 16(4), 247–251. https://doi.org/10.1177/095632020501600404
Dzoyem, J. P., Nkuete, A. H. L., Kuete, V., Tala, M. F., Wabo, H. K., Guru, S. K., Rajput, V. S., Sharma, A., Tane, P., Khan, I. A., Saxena, A. K., Laatsch, H., & Tan, N. H. (2012). Cytotoxicity and antimicrobial activity of the methanol extract and compounds from Polygonum limbatum. Planta Medica, 78(8), 787–792. https://doi.org/10.1055/s-0031-1298431
Engering, A., Hogerwerf, L., & Slingenbergh, J. (2013). Pathogen–host–environment interplay and disease emergence. Emerging Microbes & Infections, 2(1), 1–7. https://doi.org/10.1038/emi.2013.5
Enríquez, R., Ortega, J., & Lozoya, X. (1980). Active components in Perezia roots. Journal of Ethnopharmacology, 2(4), 389–393. https://doi.org/10.1016/S0378-8741(80)81018-X
Faral-Tello, P., Mirazo, S., Dutra, C., Pérez, A., Geis-Asteggiante, L., Frabasile, S., Koncke, E., Davyt, D., Cavallaro, L., Heinzen, H., & Arbiza, J. (2012). Cytotoxic, virucidal, and antiviral activity of South American plant and algae extracts. The Scientific World Journal, 5. https://doi.org/10.1100/2012/174837
Fidelis-de-Oliveira, P., Aparecida-Castro, S., Silva, D. B., Morais, I. B. de M., Miranda, V. H. M. de, de Gobbi, J. I., Canabrava, H. A. N., & Bispo-da-Silva, L. B. (2020). Hypotensive effect of Eugenia dysenterica leaf extract is primarily related to its vascular action: The possible underlying mechanisms. Journal of Ethnopharmacology, 251, 112520. https://doi.org/10.1016/j.jep.2019.112520
Freitas, A. M., Almeida, M. T. R., Andrighetti-Fröhner, C. R., Cardozo, F. T. G. S., Barardi, C. R. M., Farias, M. R., & Simões, C. M. O. (2009). Antiviral activity-guided fractionation from Araucaria angustifolia leaves extract. Journal of Ethnopharmacology, 126(3), 512–517. https://doi.org/10.1016/j.jep.2009.09.005
García, C. C., Talarico, L., Almeida, N., Colombres, S., Duschatzky, C., & Damonte, E. B. (2003). Virucidal activity of essential oils from aromatic plants of San Luis, Argentina. Phytotherapy Research, 17(9), 1073–1075. https://doi.org/10.1002/ptr.1305
García, J., Moratinos, H., & Perdomo, D. (2008). Caracterización de semillas y efectos de diferentes sustratos sobre la emergencia y desarrollo de plántulas de inchi (Caryodendron orinocense Karsten). En Rev. Fac. Agron. (Maracay) (Vol. 34).
Girón, L. M., Freire, V., Alonzo, A., & Cáceres, A. (1991). Ethnobotanical survey of the medicinal flora used by the Caribs of Guatemala. Journal of ethnopharmacology, 34(2–3), 173–187. https://doi.org/10.1016/0378-8741(91)90035-c
Gómez-Estrada, H., Díaz-Castillo, F., Franco-Ospina, L., Mercado-Camargo, J., Guzmán-Ledezma, J., Medina, J. D., & Gaitán-Ibarra, R. (2011). Folk medicine in the northern coast of Colombia: an overview. Journal of Ethnobiology and Ethnomedicine, 7(1), 1–11. https://doi.org/10.1186/1746-4269-7-27
Gonzales, G. F., Gonzales, C., & Gonzales-Castañeda, C. (2009). Lepidium meyenii (Maca): A plant from the highlands of peru - From tradition to science. En Forschende Komplementarmedizin (Vol. 16, Número 6, pp. 373–380). https://doi.org/10.1159/000264618
Hajhashemi, V., Ghannadi, A., & Sharif, B. (2003). Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. Journal of ethnopharmacology, 89(1), 67–71. https://doi.org/10.1016/s0378-8741(03)00234-4
Hao, B.-J., Wu, Y.-H., Wang, J.-G., Hu, S.-Q., Keil, D. J., Hu, H.-J., Lou, J.-D., & Zhao, Y. (2012). Hepatoprotective and antiviral properties of isochlorogenic acid A from Laggera alata against hepatitis B virus infection. Journal of Ethnopharmacology, 144(1), 190–194. https://doi.org/10.1016/j.jep.2012.09.003
Hayashi, K., Hayashi, T., Morita, N., & Niwayama, S. (1990). Antiviral activity of an extract of Cordia salicifolia on herpes simplex virus type 1. Planta Medica, 56(5), 439–443. https://doi.org/10.1055/s-2006-961006
Hebbar, S. S., Harsha, V. H., Shripathi, V., & Hegde, G. R. (2004). Ethnomedicine of Dharwad district in Karnataka, India - Plants used in oral health care. Journal of Ethnopharmacology, 94(2–3), 261–266. https://doi.org/10.1016/j.jep.2004.04.021
Hernández-Castro, C., Diaz-Castillo, F., & Martínez-Gutierrez, M. (2015). Ethanol extracts of Cassia grandis and Tabernaemontana cymosa inhibit the in vitro replication of dengue virus serotype 2. Asian Pacific Journal of Tropical Disease, 5(2), 98–106. https://doi.org/10.1016/S2222-1808(14)60635-6
Holetz, F. B., Pessini, G. L., Sanches, N. R., Cortez, D. A. G., Nakamura, C. V., & Filho, B. P. D. (2002). Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Memorias do Instituto Oswaldo Cruz, 97(7), 1027–1031. https://doi.org/10.1590/s0074-02762002000700017
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
Ishtiaq, M., Hanif, W., Khan, M. A., Ashraf, M., & Butt, A. M. (2007). An ethnomedicinal survey and documentation of important medicinal folklore food phytonims of flora of Samahni valley, (Azad Kashmir) Pakistan. Pakistan Journal of Biological Sciences, 10(13), 2241–2256. https://doi.org/10.3923/pjbs.2007.2241.2256
Jarić, S., Popović, Z., Mačukanović-Jocić, M., Djurdjević, L., Mijatović, M., Karadžić, B., Mitrović, M., & Pavlović, P. (2007). An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). Journal of Ethnopharmacology, 111(1), 160–175. https://doi.org/10.1016/j.jep.2006.11.007
Jassim, S. A. A., & Naji, M. A. (2003). Novel antiviral agents: A medicinal plant perspective. Journal of Applied Microbiology, 95(3), 412–427. https://doi.org/10.1046/j.1365-2672.2003.02026.x
Kasmi, Y., Khataby, K., Souiri, A., & Ennaji, M. M. (2019). Coronaviridae: 100,000 years of emergence and reemergence. Emerging and Reemerging Viral Pathogens: Volume 1: Fundamental and Basic Virology Aspects of Human, Animal and Plant Pathogens, 127–149. https://doi.org/10.1016/B978-0-12-819400-3.00007-7
Kim, H.-Y., Shin, H.-S., Park, H., Kim, Y.-C., Yun, Y. G., Park, S., Shin, H.-J., & Kim, K. (2008). In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. Journal of Clinical Virology, 41(2), 122–128. https://doi.org/10.1016/j.jcv.2007.10.011
Kott, V., Barbini, L., Cruañes, M., Muñoz, J. D. D., Vivot, E., Cruañes, J., Martino, V., Ferraro, G., Cavallaro, L., & Campos, R. (1998). Antiviral activity in Argentine medicinal plants. Journal of Ethnopharmacology, 64(1), 79–84. https://doi.org/10.1016/S0378-8741(98)00098-1
Lee, J. Y., Abundo, M. E. C., & Lee, C. W. (2018). Herbal medicines with antiviral activity against the influenza virus, a systematic review. En American Journal of Chinese Medicine (Vol. 46, Número 8). https://doi.org/10.1142/S0192415X18500854
Linares, E., & Bye, R. A. (1987). A study of four medicinal plant complexes of Mexico and adjacent United States. Journal of Ethnopharmacology, 19(2), 153–183. https://doi.org/10.1016/0378-8741(87)90039-0
Liu, P., Chen, W., & Chen, J.-P. (2019). Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan Pangolins (Manis javanica). Viruses, 11(11), 979. https://doi.org/10.3390/v11110979
Lopez, A., Hudson, J. B., & Towers, G. H. N. (2001). Antiviral and antimicrobial activities of Colombian medicinal plants. Journal of Ethnopharmacology, 77(2–3), 189–196. https://doi.org/10.1016/S0378-8741(01)00292-6
Lückemeyer, D. D., Müller, V. D. M., Moritz, M. I. G., Stoco, P. H., Schenkel, E. P., Barardi, C. R. M., Reginatto, F. H., & Simões, C. M. O. (2012). Effects of Ilex paraguariensis A. St. Hil. (yerba mate) on herpes simplex virus types 1 and 2 replication. Phytotherapy Research, 26(4), 535–540. https://doi.org/10.1002/ptr.3590
Masters, P. S. (2006). The Molecular Biology of Coronaviruses. En Advances in Virus Research (Vol. 65, pp. 193–292). https://doi.org/10.1016/S0065-3527(06)66005-3
Mitra, S. K., Irenaeus, T. K. S., Gurung, M. R., & Pathak, P. K. (2012). Taxonomy and importance of Myrtaceae. Acta Horticulturae, 959, 23–34. https://doi.org/10.17660/ActaHortic.2012.959.2
Modak, B., Sandino, A. M., Arata, L., Cárdenas-Jirón, G., & Torres, R. (2010). Inhibitory effect of aromatic geranyl derivatives isolated from Heliotropium filifolium on infectious pancreatic necrosis virus replication. Veterinary Microbiology, 141(1–2), 53–58. https://doi.org/10.1016/j.vetmic.2009.09.005
Mohammadi Pour, P., Fakhri, S., Asgary, S., Farzaei, M. H., & Echeverría, J. (2019). The Signaling Pathways, and Therapeutic Targets of Antiviral Agents: Focusing on the Antiviral Approaches and Clinical Perspectives of Anthocyanins in the Management of Viral Diseases. Frontiers in pharmacology, 10, 1207. https://doi.org/10.3389/fphar.2019.01207
Möstl, K. (1990). Coronaviridae, pathogenetic and clinical aspects: An update. En Comparative Immunology, Microbiology and Infectious Diseases (Vol. 13, Número 4, pp. 169–180). Pergamon. https://doi.org/10.1016/0147-9571(90)90085-8
Mousa, H. A. L. (2017). Prevention and Treatment of Influenza, Influenza-Like Illness, and Common Cold by Herbal, Complementary, and Natural Therapies. Journal of Evidence-Based Complementary and Alternative Medicine, 22(1), 166–174. https://doi.org/10.1177/2156587216641831
Pacheco, P., Sierra, J., Schmeda‐Hirschmann, G., Potter, C. W., Jones, B. M., & Moshref, M. (1993). Antiviral activity of chilean medicinal plant extracts. En Phytotherapy Research (Vol. 7, Número 6, pp. 415–418). John Wiley & Sons, Ltd. https://doi.org/10.1002/ptr.2650070606
Patil, K. S., & Bhalsing, S. R. (2016). Ethnomedicinal uses, phytochemistry and pharmacological properties of the genus Boerhavia. En Journal of Ethnopharmacology (Vol. 182, pp. 200–220). Elsevier Ireland Ltd. https://doi.org/10.1016/j.jep.2016.01.042
Peralta, R. M., Koehnlein, E. A., Oliveira, R. F., Correa, V. G., Corrêa, R. C. G., Bertonha, L., Bracht, A., & Ferreira, I. C. F. R. (2016). Biological activities and chemical constituents of Araucaria angustifolia: An effort to recover a species threatened by extinction. En Trends in Food Science and Technology (Vol. 54, pp. 85–93). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2016.05.013
Pereira, P. S., França, S. D. C., De Oliveira, P. V. A., Breves, C. M. D. S., Pereira, S. I. V., Sampaio, S. V., Nomizo, A., & Dias, D. A. (2008). Chemical constituents from Tabernaemontana catharinensis root bark: A brief NMR review of indole alkaloids and in vitro cytotoxicity. Quimica Nova, 31(1), 20–24. https://doi.org/10.1590/S0100-40422008000100004
Pérez-García, F., Marín, E., Adzet, T., & Cañigueral, S. (2001). Activity of plant extracts on the respiratory burst and the stress protein synthesis. Phytomedicine, 8(1), 31–38. https://doi.org/10.1078/0944-7113-00018
Petrosillo, N., Viceconte, G., Ergonul, O., Ippolito, G., & Petersen, E. (2020). COVID-19, SARS and MERS: are they closely related? Clinical Microbiology and Infection. https://doi.org/10.1016/j.cmi.2020.03.026
Rakover, Y., Ben-Arye, E., & Goldstein, L. H. (2008). [The treatment of respiratory ailments with essential oils of some aromatic medicinal plants]. Harefuah, 147(10), 783–788, 838.
Rashed, K., Sahuc, M. E., Deloison, G., Calland, N., Brodin, P., Rouillé, Y., & Séron, K. (2014). Potent antiviral activity of Solanum rantonnetii and the isolated compounds against hepatitis C virus in vitro. Journal of Functional Foods, 11(C), 185–191. https://doi.org/10.1016/j.jff.2014.09.022
Reis, S. R. I. N., Valente, L. M. M., Sampaio, A. L., Siani, A. C., Gandini, M., Azeredo, E. L., D’Avila, L. A., Mazzei, J. L., Henriques, M. das G. M., & Kubelka, C. F. (2008). Immunomodulating and antiviral activities of Uncaria tomentosa on human monocytes infected with Dengue Virus-2. International Immunopharmacology, 8(3), 468–476. https://doi.org/10.1016/j.intimp.2007.11.010
Robson, B. (2020). COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles’ heel conserved region to minimize probability of escape mutations and drug resistance. Computers in Biology and Medicine, 103749. https://doi.org/10.1016/j.compbiomed.2020.103749
Rocha Martins, L. R., Brenzan, M. A., Nakamura, C. V., Dias Filho, B. P., Nakamura, T. U., Ranieri Cortez, L. E., & Garcia Cortez, D. A. (2011). In vitro antiviral activity from Acanthospermum australe on herpesvirus and poliovirus. Pharmaceutical Biology, 49(1), 26–31. https://doi.org/10.3109/13880209.2010.493177
Roumy, V., Ruiz, L., Ruiz Macedo, J. C., Gutierrez-Choquevilca, A. L., Samaillie, J., Encinas, L. A., Mesia, W. R., Ricopa Cotrina, H. E., Rivière, C., Sahpaz, S., Bordage, S., Garçon, G., Dubuisson, J., Anthérieu, S., Seron, K., & Hennebelle, T. (2020). Viral hepatitis in the Peruvian Amazon: Ethnomedical context and phytomedical resource. Journal of Ethnopharmacology, 255, 112735. https://doi.org/10.1016/j.jep.2020.112735
Ryding, O. (1995). Pericarp structure and phylogeny of the Lamiaceae-Verbenaceae-complex. Plant Systematics and Evolution, 198(1–2), 101–141. https://doi.org/10.1007/BF00985109
Sabini, M. C., Cariddi, L. N., Escobar, F. M., Mañas, F., Comini, L., Iglesias, D., Larrauri, M., Montoya, S. N., Sereno, J., Contigiani, M. S., Cantero, J. J., & Sabini, L. I. (2016). Potent inhibition of Western equine encephalitis virus by a fraction rich in flavonoids and phenolic acids obtained from Achyrocline satureioides. Brazilian Journal of Pharmacognosy, 26(5), 571–578. https://doi.org/10.1016/j.bjp.2016.05.004
Sánchez, M., Kramer, F., Bargardi, S., & Palermo, J. A. (2009). Melampolides from Argentinean Acanthospermum australe. Phytochemistry Letters, 2(3), 93–95. https://doi.org/10.1016/j.phytol.2008.12.007
Shen, K., Yang, Y., Wang, T., Zhao, D., Jiang, Y., Jin, R., Zheng, Y., Xu, B., Xie, Z., Lin, L., Shang, Y., Lu, X., Shu, S., Bai, Y., Deng, J., Lu, M., Ye, L., Wang, X., Wang, Y., & Gao, L. (2020). Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. En World Journal of Pediatrics. Institute of Pediatrics of Zhejiang University. https://doi.org/10.1007/s12519-020-00343-7
Simões, C. M. O., Falkenberg, M., Mentz, L. A., Schenkel, E. P., Amoros, M., & Girre, L. (1999). Antiviral activity of South Brazilian medicinal plant extracts. Phytomedicine, 6(3), 205–214. https://doi.org/10.1016/S0944-7113(99)80010-5
Susan van, D., Beulens, J. W. J., Yvonne T. van der, S., Grobbee, D. E., & Nealb, B. (2010). The global burden of diabetes and its complications: an emerging pandemic. European Journal of Cardiovascular Prevention & Rehabilitation, 17(1_suppl), s3–s8. https://doi.org/10.1097/01.hjr.0000368191.86614.5a
Thompson, K. D. (2006). Herbal extracts and compounds active against herpes simplex virus. En Advances in Phytomedicine (Vol. 2, Número C, pp. 65–86). Elsevier. https://doi.org/10.1016/S1572-557X(05)02005-2
Torres, R., Modak, B., Urzúa, A., Delle Monache, F., & Pujol, E. D. Y. C. A. (2002). Propiedades antivirales de compuestos naturales y semi-sinteticos de la resina de Heliotropium filifolium. Boletin de la Sociedad Chilena de Quimica.
Trujillo, F., & Lasso, C. A. (Carlos A. (2017). Biodiversidad del Río Bita, Vichada, Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
Turner, N. J., & Hebda, R. J. (1990). Contemporary use of bark for medicine by two Salishan native elders of southeast Vancouver Island, Canada. Journal of ethnopharmacology, 29(1), 59–72. https://doi.org/10.1016/0378-8741(90)90098-e
Ubillas, R., Jolad, S. D., Bruening, R. C., Kernan, M. R., King, S. R., Sesin, D. F., Barrett, M., Stoddart, C. A., Flaster, T., Kuo, J., Ayala, F., Meza, E., Castañel, M., Mcmeekin, D., Rozhon, E., Tempesta, M. S., Barnard, D., Huffman, J., Smee, D., … Nakanishi, K. (1994). SP-303, an antiviral oligomeric proanthocyanidin from the latex of Croton lechleri (Sangre de Drago). Phytomedicine, 1(2), 77–106. https://doi.org/10.1016/S0944-7113(11)80026-7
Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. https://doi.org/10.1016/j.cell.2020.02.058
Weese, T. L., & Bohs, L. (2007). A Three-Gene Phylogeny of the Genus Solanum (Solanaceae). Systematic Botany, 32(2), 445–463. https://doi.org/10.1600/036364407781179671
Weil, A. T. (1978). Coca leaf as a therapeutic agent. American Journal of Drug and Alcohol Abuse, 5(1), 75–86. https://doi.org/10.3109/00952997809029262
WHO. (2020). Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected.
Yang, Y., Islam, S., Wang, J., Li, Y., & Chen, X. (2020). Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus ( SARS-CoV-2 ): A Review and Perspective. 16. https://doi.org/10.7150/ijbs.45538
Yao, X. J., Wainberg, M. A., & Parniak, M. A. (1992). Mechanism of inhibition of HIV-1 infection in Vitro by purified extract of Prunella vulgaris. Virology, 187(1), 56–62. https://doi.org/10.1016/0042-6822(92)90294-Y
Zhang, T., Wu, Q., & Zhang, Z. (2020). Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Current Biology, 30(7), 1346-1351.e2. https://doi.org/10.1016/j.cub.2020.03.022