Review of in vitro antiviral activity of south american plants on purpose of SARS-CoV-2 coronavirus

Main Article Content

Omar Vacas C.
Miguel Vivas R.
Patricio Herrera M.
https://orcid.org/0000-0002-1962-7247
Valeria Andrango G.
https://orcid.org/0000-0002-0053-2563
Maria Fernanda Pilaquinga
https://orcid.org/0000-0002-0841-6313

Abstract

The alert for the pandemic caused by the SARS-CoV-2 coronavirus has unleashed a race against time in search of a possible treatment. Several antiviral drugs used to control the development of the disease are derived from molecules obtained from plants, however, their isolation can result in the reduction or cancellation of the effect. The use of ancestral plants in developing countries, where access to a specific pharmacological treatment is still limited, natural therapies represent the first line of defense against the virus. In the present study, several investigations regarding the in vitro activity of South American plants with potential antiviral activity were analyzed, classified by country (Argentina, Brazil, Bolivia, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay and Venezuela). The Asteraceae family presented the highest percentage of use for the treatment of respiratory diseases with 18 %. It is concluded that the biodiversity of South American plants can be exploited, so it is suggested to carry out an in vitro study on the SARS-CoV-2 virus.

Downloads

Download data is not yet available.

Article Details

Section
Special Issue

References

Abad, M J, Bermejo, P., Sanchez Palomino, S., Chiriboga, X., & Carrasco, L. (1999). Antiviral activity of some South American medicinal plants. Phytotherapy Research, 13(2), 142–146. https://doi.org/10.1002/(SICI)1099-1573(199903)13:2<142::AID-PTR392>3.0.CO;2-7

Abad, María José, Bermejo, P., Gonzales, E., Iglesias, I., Irurzun, A., & Carrasco, L. (1999). Antiviral activity of Bolivian plant extracts. General Pharmacology, 32(4), 499–503. https://doi.org/10.1016/S0306-3623(98)00214-6

Abdel-Malek, S., Bastien, J. W., Mahler, W. F., Jia, Q., Reinecke, M. G., Robinson, W. E., Shu, Y. H., & Zalles-Asin, J. (1996). Drug leads from the Kallawaya herbalists of Bolivia. 1. Background, rationale, protocol and anti-HIV activity. Journal of Ethnopharmacology, 50(3), 157–166. https://doi.org/10.1016/0378-8741(96)01380-3

Ali-Shtayeh, M. S., Yaniv, Z., & Mahajna, J. (2000). Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. Journal of ethnopharmacology, 73(1–2), 221–232. https://doi.org/10.1016/s0378-8741(00)00316-0

Andrade-Cetto, A. (2009). Ethnobotanical study of the medicinal plants from Tlanchinol, Hidalgo, México. Journal of Ethnopharmacology, 122(1), 163–171. https://doi.org/10.1016/j.jep.2008.12.008

Andrighetti-Fröhner, C. R., Sincero, T. C. M., Da Silva, A. C., Savi, L. A., Gaido, C. M., Bettega, J. M. R., Mancini, M., De Almeida, M. T. R., Barbosa, R. A., Farias, M. R., Barardi, C. R. M., & Simões, C. M. O. (2005). Antiviral evaluation of plants from Brazilian Atlantic Tropical Forest. Fitoterapia, 76(3–4), 374–378. https://doi.org/10.1016/j.fitote.2005.03.010

Arboleda, D., Cañas, A. L., López, A., & Forero, J. E. (2006). Evaluación de la actividad antiviral in vitro de cuatro extractos de las especies Caryodendron orinocense y Phyllanthus niruri de la familia Euphorbiaceae contra los virus herpes bovino tipo 1 y herpes simplex tipo 2 Evaluation of the in vitro antiviral activity of four extracts from the species Caryodendron orinocense AND Phyllanthus niruri from Euphorbiaceae family against herpes simplex virus type 2 and bovine herpes virus type 1.

Arboleda, D., Cañas, A., López, A., & Forero, J. (2007). Evaluación de la actividad antiviral in vitro de cuatro extractos de las especies Caryodendron orinocense y Phyllanthus niruri de la familia Euphorbiaceae contra los virus herpes bovino tipo 1 y herpes simplex tipo 2. Vitae (Medellín), 55–60.

Atta, A. H., & Alkofahi, A. (1998). Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. Journal of ethnopharmacology, 60(2), 117–124. https://doi.org/10.1016/s0378-8741(97)00137-2

Barboza, L. N., Lívero, F. A. D. R., Prando, T. B. L., Ribeiro, R. D. C. L., Lourenço, E. L. B., Budel, J. M., De Souza, L. M., Acco, A., Dalsenter, P. R., & Gasparotto, A. (2016). Atheroprotective effects of Cuphea carthagenensis (Jacq.) J. F. Macbr. in New Zealand rabbits fed with cholesterol-rich diet. Journal of Ethnopharmacology, 187, 134–145. https://doi.org/10.1016/j.jep.2016.04.027

Bastos, D. H. M., Saldanha, L. A., Catharino, R. R., Sawaya, A. C. H. F., Cunha, I. B. S., Carvalho, P. O., & Eberlin, M. N. (2007). Phenolic antioxidants identified by ESI-MS from yerba maté (Ilex paraguariensis) and green tea (Camelia sinensis) extracts. Molecules, 12(3), 423–432. https://doi.org/10.3390/12030423

Biella, C. de A., Salvador, M. J., Dias, D. A., Dias-Baruffi, M., & Pereira-Crott, L. S. (2008). Evaluation of immunomodulatory and anti-inflammatory effects and phytochemical screening of Alternanthera tenella Colla (Amaranthaceae) aqueous extracts. Memorias do Instituto Oswaldo Cruz, 103(6), 569–577. https://doi.org/10.1590/s0074-02762008000600010

Böcher, T. W. (1967). Continuous variation and taxonomy. taxon, 16(4), 255–258. https://doi.org/10.2307/1216371

Boligon, A. A., Kubiça, T. F., Mario, D. N., de Brum, T. F., Piana, M., Weiblen, R., Lovato, L., Alves, S. H., Santos, R. C. V., dos Santos Alves, C. F., & Athayde, M. L. (2013). Antimicrobial and antiviral activity-guided fractionation from Scutia buxifolia Reissek extracts. Acta Physiologiae Plantarum, 35(7), 2229–2239. https://doi.org/10.1007/s11738-013-1259-0

Boligon, A. A., Pereira, R. P., Feltrin, A. C., Machado, M. M., Janovik, V., Rocha, J. B. T., & Athayde, M. L. (2009). Antioxidant activities of flavonol derivatives from the leaves and stem bark of Scutia buxifolia Reiss. Bioresource Technology, 100(24), 6592–6598. https://doi.org/10.1016/j.biortech.2009.03.091

Boligon, A. A., Piana, M., Kubiça, T. F., Mario, D. N., Dalmolin, T. V., Bonez, P. C., Weiblen, R., Lovato, L., Alves, S. H., Campos, M. M. A., & Athayde, M. L. (2015). HPLC analysis and antimicrobial, antimycobacterial and antiviral activities of Tabernaemontana catharinensis A. DC. Journal of Applied Biomedicine, 13(1), 7–18. https://doi.org/10.1016/j.jab.2014.01.004

Bonilla-Aldana, D. K., Holguin-Rivera, Y., Cortes-Bonilla, I., Cardona-Trujillo, M. C., García-Barco, A., Bedoya-Arias, H. A., Rabaan, A. A., Sah, R., & Rodriguez-Morales, A. J. (2020). Coronavirus infections reported by ProMED, February 2000–January 2020. Travel Medicine and Infectious Disease, 101575. https://doi.org/10.1016/j.tmaid.2020.101575

Braga, F. G., Bouzada, M. L. M., Fabri, R. L., de O. Matos, M., Moreira, F. O., Scio, E., & Coimbra, E. S. (2007). Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. Journal of Ethnopharmacology, 111(2), 396–402. https://doi.org/10.1016/j.jep.2006.12.006

Brandão, G. C., Kroon, E. G., Duarte, M. G. R., Braga, F. C., de Souza Filho, J. D., & de Oliveira, A. B. (2010). Antimicrobial, antiviral and cytotoxic activity of extracts and constituents from Polygonum spectabile Mart. Phytomedicine, 17(12), 926–929. https://doi.org/10.1016/j.phymed.2010.03.004

Bussmann, R. W., & Sharon, D. (2006). Traditional medicinal plant use in Northern Peru: Tracking two thousand years of healing culture. Journal of Ethnobiology and Ethnomedicine, 2, 47. https://doi.org/10.1186/1746-4269-2-47

Calvo, C., García López-Hortelano, M., de Carlos Vicente, J. C., Vázquez Martínez, J. L., Ramos, J. T., Baquero-Artigao, F., Navarro, M. L., Rodrigo, C., Neth, O., Fumadó, V., Menendez Suso, J. J., Slocker Barrio, M., Bustinza Arriortua, A., Jordán García, I., & Pilar Orive, J. (2020). Recomendaciones sobre el manejo clínico de la infección por el «nuevo coronavirus» SARS-CoV2. Grupo de trabajo de la Asociación Española de Pediatría (AEP). Anales de Pediatría. https://doi.org/10.1016/j.anpedi.2020.02.001

Caparroz-Assef, S. M., Grespan, R., Freire Batista, R. C., Bersani-Amado, F. A., Baroni, S., Araujo Dantas, J., Nakamura Cuman, R. K., & Bersani-Amado, C. A. (2005). Toxicity studies of Cordia salicifolia extract. Acta Scientiarum - Health Sciences, 27(1), 41–44. https://doi.org/10.4025/actascihealthsci.v27i1.1439

Carlucci, M. J., Scolaro, L. A., Errea, M. I., Matulewicz, M. C., & Damonte, E. B. (1997). Antiviral activity of natural sulphated galactans on herpes virus multiplication in cell culture. Planta Medica, 63(5), 429–432. https://doi.org/10.1055/s-2006-957727

Cecílio, A. B., Faria, D. B. De, Oliveira, P. D. C., Caldas, S., Oliveira, D. A. De, Sobral, M. E. G., Duarte, M. G. R., Moreira, C. P. D. S., Silva, C. G., & Almeida, V. L. De. (2012). Screening of Brazilian medicinal plants for antiviral activity against rotavirus. Journal of Ethnopharmacology, 141(3), 975–981. https://doi.org/10.1016/j.jep.2012.03.031

Chan, J. F. W., To, K. K. W., Tse, H., Jin, D. Y., & Yuen, K. Y. (2013). Interspecies transmission and emergence of novel viruses: Lessons from bats and birds. En Trends in Microbiology (Vol. 21, Número 10, pp. 544–555). Elsevier Current Trends. https://doi.org/10.1016/j.tim.2013.05.005

Chen, H., & Du, Q. (2020). Potential natural compounds for preventing 2019-nCoV infection. Preprints.

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7

Cheng, P. W., Ng, L. T., Chiang, L. C., & Lin, C. C. (2006). Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clinical and Experimental Pharmacology and Physiology, 33(7), 612–616. https://doi.org/10.1111/j.1440-1681.2006.04415.x

Chiriboga, X. (2010). Etnomedicina y etnobotánica avances en la investigación.

Chiru, T., Fursenco, C., Ciobanu, N., Dinu, M., Popescu, E., Ancuceanu, R., Volmer, D., & Raal, A. (2020). Use of medicinal plants in complementary treatment of the common cold and influenza – perception of pharmacy customers in Moldova and Romania. Journal of Herbal Medicine, 100346. https://doi.org/10.1016/j.hermed.2020.100346

Cho, K.-O., & Hoet, A. E. (2014). Toroviruses (Coronaviridae). En Reference Module in Biomedical Sciences. Elsevier. https://doi.org/10.1016/b978-0-12-801238-3.02674-x

Cotten, M., Watson, S. J., Zumla, A. I., Makhdoom, H. Q., Palser, A. L., Ong, S. H., Al Rabeeah, A. A., Alhakeem, R. F., Assiri, A., Al-Tawfiq, J. A., Albarrak, A., Barry, M., Shibl, A., Alrabiah, F. A., Hajjar, S., Balkhy, H. H., Flemban, H., Rambaut, A., Kellam, P., & Memish, Z. A. (2014). Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus. mBio, 5(1). https://doi.org/10.1128/mBio.01062-13

Cruz-Vega, D. E., Verde-Star, M. J., Salinas-González, N., Rosales-Hernández, B., Estrada-García, I., Mendez-Aragón, P., Carranza-Rosales, P., González-Garza, M. T., & Castro-Garza, J. (2008). Antimycobacterial activity of Juglans regia, Juglans mollis, Carya illinoensis and Bocconia frutescens. Phytotherapy Research, 22(4), 557–559. https://doi.org/10.1002/ptr.2343

Cryer, M., Lane, K., Greer, M., Cates, R., Burt, S., Andrus, M., Zou, J., Rogers, P., Hansen, M. D. H., Burgado, J., Satheshkumar, P. S., Day, C. W., Smee, D. F., & Johnson, F. B. (2017). Isolation and identification of compounds from Kalanchoe pinnata having human alphaherpesvirus and vaccinia virus antiviral activity. Pharmaceutical Biology, 55(1), 1586–1591. https://doi.org/10.1080/13880209.2017.1310907

de Groot, R. J., Baker, S. C., Baric, R., Enjuanes, L., Gorbalenya, A. E., Holmes, K. V, Perlman, S., Poon, L., Rottier, P. J. M., Talbot, P. J., Woo, P. C. Y., & Ziebuhr, J. (2012). Part II – The Positive Sense Single Stranded RNA Viruses Family Coronaviridae. En Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses (Número Figure 1, pp. 806–828). Elsevier. https://doi.org/10.1016/B978-0-12-384684-6.00068-9

De Riscala, E. C., Catalan, C. A. N., Sosa, V. E., Gutiérrez, A. B., & Herz, W. (1988). Trixane derivatives from Trixis praestans. Phytochemistry, 27(7), 2343–2346. https://doi.org/10.1016/0031-9422(88)80157-2

De Wit, E., Van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: Recent insights into emerging coronaviruses. En Nature Reviews Microbiology (Vol. 14, Número 8, pp. 523–534). Nature Publishing Group. https://doi.org/10.1038/nrmicro.2016.81

del Valle Mendoza, J., Pumarola, T., Gonzales, L. A., & del Valle, L. J. (2014). Antiviral activity of maca (Lepidium meyenii) against human influenza virus. Asian Pacific Journal of Tropical Medicine, 7(S1), S415–S420. https://doi.org/10.1016/S1995-7645(14)60268-6

do Nascimento, K. F., Moreira, F. M. F., Alencar Santos, J., Kassuya, C. A. L., Croda, J. H. R., Cardoso, C. A. L., Vieira, M. do C., Góis Ruiz, A. L. T., Ann Foglio, M., de Carvalho, J. E., & Formagio, A. S. N. (2018). Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. Journal of Ethnopharmacology, 210, 351–358. https://doi.org/10.1016/j.jep.2017.08.030

Duschatzky, C. B., Possetto, M. L., Talarico, L. B., García, C. C., Michis, F., Almeida, N. V, De Lampasona, M. P., Schuff, C., & Damonte, E. B. (2005). Evaluation of chemical and antiviral properties of essential oils from South American plants. Antiviral Chemistry and Chemotherapy, 16(4), 247–251. https://doi.org/10.1177/095632020501600404

Dzoyem, J. P., Nkuete, A. H. L., Kuete, V., Tala, M. F., Wabo, H. K., Guru, S. K., Rajput, V. S., Sharma, A., Tane, P., Khan, I. A., Saxena, A. K., Laatsch, H., & Tan, N. H. (2012). Cytotoxicity and antimicrobial activity of the methanol extract and compounds from Polygonum limbatum. Planta Medica, 78(8), 787–792. https://doi.org/10.1055/s-0031-1298431

Engering, A., Hogerwerf, L., & Slingenbergh, J. (2013). Pathogen–host–environment interplay and disease emergence. Emerging Microbes & Infections, 2(1), 1–7. https://doi.org/10.1038/emi.2013.5

Enríquez, R., Ortega, J., & Lozoya, X. (1980). Active components in Perezia roots. Journal of Ethnopharmacology, 2(4), 389–393. https://doi.org/10.1016/S0378-8741(80)81018-X

Faral-Tello, P., Mirazo, S., Dutra, C., Pérez, A., Geis-Asteggiante, L., Frabasile, S., Koncke, E., Davyt, D., Cavallaro, L., Heinzen, H., & Arbiza, J. (2012). Cytotoxic, virucidal, and antiviral activity of South American plant and algae extracts. The Scientific World Journal, 5. https://doi.org/10.1100/2012/174837

Fidelis-de-Oliveira, P., Aparecida-Castro, S., Silva, D. B., Morais, I. B. de M., Miranda, V. H. M. de, de Gobbi, J. I., Canabrava, H. A. N., & Bispo-da-Silva, L. B. (2020). Hypotensive effect of Eugenia dysenterica leaf extract is primarily related to its vascular action: The possible underlying mechanisms. Journal of Ethnopharmacology, 251, 112520. https://doi.org/10.1016/j.jep.2019.112520

Freitas, A. M., Almeida, M. T. R., Andrighetti-Fröhner, C. R., Cardozo, F. T. G. S., Barardi, C. R. M., Farias, M. R., & Simões, C. M. O. (2009). Antiviral activity-guided fractionation from Araucaria angustifolia leaves extract. Journal of Ethnopharmacology, 126(3), 512–517. https://doi.org/10.1016/j.jep.2009.09.005

García, C. C., Talarico, L., Almeida, N., Colombres, S., Duschatzky, C., & Damonte, E. B. (2003). Virucidal activity of essential oils from aromatic plants of San Luis, Argentina. Phytotherapy Research, 17(9), 1073–1075. https://doi.org/10.1002/ptr.1305

García, J., Moratinos, H., & Perdomo, D. (2008). Caracterización de semillas y efectos de diferentes sustratos sobre la emergencia y desarrollo de plántulas de inchi (Caryodendron orinocense Karsten). En Rev. Fac. Agron. (Maracay) (Vol. 34).

Girón, L. M., Freire, V., Alonzo, A., & Cáceres, A. (1991). Ethnobotanical survey of the medicinal flora used by the Caribs of Guatemala. Journal of ethnopharmacology, 34(2–3), 173–187. https://doi.org/10.1016/0378-8741(91)90035-c

Gómez-Estrada, H., Díaz-Castillo, F., Franco-Ospina, L., Mercado-Camargo, J., Guzmán-Ledezma, J., Medina, J. D., & Gaitán-Ibarra, R. (2011). Folk medicine in the northern coast of Colombia: an overview. Journal of Ethnobiology and Ethnomedicine, 7(1), 1–11. https://doi.org/10.1186/1746-4269-7-27

Gonzales, G. F., Gonzales, C., & Gonzales-Castañeda, C. (2009). Lepidium meyenii (Maca): A plant from the highlands of peru - From tradition to science. En Forschende Komplementarmedizin (Vol. 16, Número 6, pp. 373–380). https://doi.org/10.1159/000264618

Hajhashemi, V., Ghannadi, A., & Sharif, B. (2003). Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. Journal of ethnopharmacology, 89(1), 67–71. https://doi.org/10.1016/s0378-8741(03)00234-4

Hao, B.-J., Wu, Y.-H., Wang, J.-G., Hu, S.-Q., Keil, D. J., Hu, H.-J., Lou, J.-D., & Zhao, Y. (2012). Hepatoprotective and antiviral properties of isochlorogenic acid A from Laggera alata against hepatitis B virus infection. Journal of Ethnopharmacology, 144(1), 190–194. https://doi.org/10.1016/j.jep.2012.09.003

Hayashi, K., Hayashi, T., Morita, N., & Niwayama, S. (1990). Antiviral activity of an extract of Cordia salicifolia on herpes simplex virus type 1. Planta Medica, 56(5), 439–443. https://doi.org/10.1055/s-2006-961006

Hebbar, S. S., Harsha, V. H., Shripathi, V., & Hegde, G. R. (2004). Ethnomedicine of Dharwad district in Karnataka, India - Plants used in oral health care. Journal of Ethnopharmacology, 94(2–3), 261–266. https://doi.org/10.1016/j.jep.2004.04.021

Hernández-Castro, C., Diaz-Castillo, F., & Martínez-Gutierrez, M. (2015). Ethanol extracts of Cassia grandis and Tabernaemontana cymosa inhibit the in vitro replication of dengue virus serotype 2. Asian Pacific Journal of Tropical Disease, 5(2), 98–106. https://doi.org/10.1016/S2222-1808(14)60635-6

Holetz, F. B., Pessini, G. L., Sanches, N. R., Cortez, D. A. G., Nakamura, C. V., & Filho, B. P. D. (2002). Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Memorias do Instituto Oswaldo Cruz, 97(7), 1027–1031. https://doi.org/10.1590/s0074-02762002000700017

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5

Ishtiaq, M., Hanif, W., Khan, M. A., Ashraf, M., & Butt, A. M. (2007). An ethnomedicinal survey and documentation of important medicinal folklore food phytonims of flora of Samahni valley, (Azad Kashmir) Pakistan. Pakistan Journal of Biological Sciences, 10(13), 2241–2256. https://doi.org/10.3923/pjbs.2007.2241.2256

Jarić, S., Popović, Z., Mačukanović-Jocić, M., Djurdjević, L., Mijatović, M., Karadžić, B., Mitrović, M., & Pavlović, P. (2007). An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). Journal of Ethnopharmacology, 111(1), 160–175. https://doi.org/10.1016/j.jep.2006.11.007

Jassim, S. A. A., & Naji, M. A. (2003). Novel antiviral agents: A medicinal plant perspective. Journal of Applied Microbiology, 95(3), 412–427. https://doi.org/10.1046/j.1365-2672.2003.02026.x

Kasmi, Y., Khataby, K., Souiri, A., & Ennaji, M. M. (2019). Coronaviridae: 100,000 years of emergence and reemergence. Emerging and Reemerging Viral Pathogens: Volume 1: Fundamental and Basic Virology Aspects of Human, Animal and Plant Pathogens, 127–149. https://doi.org/10.1016/B978-0-12-819400-3.00007-7

Kim, H.-Y., Shin, H.-S., Park, H., Kim, Y.-C., Yun, Y. G., Park, S., Shin, H.-J., & Kim, K. (2008). In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. Journal of Clinical Virology, 41(2), 122–128. https://doi.org/10.1016/j.jcv.2007.10.011

Kott, V., Barbini, L., Cruañes, M., Muñoz, J. D. D., Vivot, E., Cruañes, J., Martino, V., Ferraro, G., Cavallaro, L., & Campos, R. (1998). Antiviral activity in Argentine medicinal plants. Journal of Ethnopharmacology, 64(1), 79–84. https://doi.org/10.1016/S0378-8741(98)00098-1

Lee, J. Y., Abundo, M. E. C., & Lee, C. W. (2018). Herbal medicines with antiviral activity against the influenza virus, a systematic review. En American Journal of Chinese Medicine (Vol. 46, Número 8). https://doi.org/10.1142/S0192415X18500854

Linares, E., & Bye, R. A. (1987). A study of four medicinal plant complexes of Mexico and adjacent United States. Journal of Ethnopharmacology, 19(2), 153–183. https://doi.org/10.1016/0378-8741(87)90039-0

Liu, P., Chen, W., & Chen, J.-P. (2019). Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan Pangolins (Manis javanica). Viruses, 11(11), 979. https://doi.org/10.3390/v11110979

Lopez, A., Hudson, J. B., & Towers, G. H. N. (2001). Antiviral and antimicrobial activities of Colombian medicinal plants. Journal of Ethnopharmacology, 77(2–3), 189–196. https://doi.org/10.1016/S0378-8741(01)00292-6

Lückemeyer, D. D., Müller, V. D. M., Moritz, M. I. G., Stoco, P. H., Schenkel, E. P., Barardi, C. R. M., Reginatto, F. H., & Simões, C. M. O. (2012). Effects of Ilex paraguariensis A. St. Hil. (yerba mate) on herpes simplex virus types 1 and 2 replication. Phytotherapy Research, 26(4), 535–540. https://doi.org/10.1002/ptr.3590

Masters, P. S. (2006). The Molecular Biology of Coronaviruses. En Advances in Virus Research (Vol. 65, pp. 193–292). https://doi.org/10.1016/S0065-3527(06)66005-3

Mitra, S. K., Irenaeus, T. K. S., Gurung, M. R., & Pathak, P. K. (2012). Taxonomy and importance of Myrtaceae. Acta Horticulturae, 959, 23–34. https://doi.org/10.17660/ActaHortic.2012.959.2

Modak, B., Sandino, A. M., Arata, L., Cárdenas-Jirón, G., & Torres, R. (2010). Inhibitory effect of aromatic geranyl derivatives isolated from Heliotropium filifolium on infectious pancreatic necrosis virus replication. Veterinary Microbiology, 141(1–2), 53–58. https://doi.org/10.1016/j.vetmic.2009.09.005

Mohammadi Pour, P., Fakhri, S., Asgary, S., Farzaei, M. H., & Echeverría, J. (2019). The Signaling Pathways, and Therapeutic Targets of Antiviral Agents: Focusing on the Antiviral Approaches and Clinical Perspectives of Anthocyanins in the Management of Viral Diseases. Frontiers in pharmacology, 10, 1207. https://doi.org/10.3389/fphar.2019.01207

Möstl, K. (1990). Coronaviridae, pathogenetic and clinical aspects: An update. En Comparative Immunology, Microbiology and Infectious Diseases (Vol. 13, Número 4, pp. 169–180). Pergamon. https://doi.org/10.1016/0147-9571(90)90085-8

Mousa, H. A. L. (2017). Prevention and Treatment of Influenza, Influenza-Like Illness, and Common Cold by Herbal, Complementary, and Natural Therapies. Journal of Evidence-Based Complementary and Alternative Medicine, 22(1), 166–174. https://doi.org/10.1177/2156587216641831

Pacheco, P., Sierra, J., Schmeda‐Hirschmann, G., Potter, C. W., Jones, B. M., & Moshref, M. (1993). Antiviral activity of chilean medicinal plant extracts. En Phytotherapy Research (Vol. 7, Número 6, pp. 415–418). John Wiley & Sons, Ltd. https://doi.org/10.1002/ptr.2650070606

Patil, K. S., & Bhalsing, S. R. (2016). Ethnomedicinal uses, phytochemistry and pharmacological properties of the genus Boerhavia. En Journal of Ethnopharmacology (Vol. 182, pp. 200–220). Elsevier Ireland Ltd. https://doi.org/10.1016/j.jep.2016.01.042

Peralta, R. M., Koehnlein, E. A., Oliveira, R. F., Correa, V. G., Corrêa, R. C. G., Bertonha, L., Bracht, A., & Ferreira, I. C. F. R. (2016). Biological activities and chemical constituents of Araucaria angustifolia: An effort to recover a species threatened by extinction. En Trends in Food Science and Technology (Vol. 54, pp. 85–93). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2016.05.013

Pereira, P. S., França, S. D. C., De Oliveira, P. V. A., Breves, C. M. D. S., Pereira, S. I. V., Sampaio, S. V., Nomizo, A., & Dias, D. A. (2008). Chemical constituents from Tabernaemontana catharinensis root bark: A brief NMR review of indole alkaloids and in vitro cytotoxicity. Quimica Nova, 31(1), 20–24. https://doi.org/10.1590/S0100-40422008000100004

Pérez-García, F., Marín, E., Adzet, T., & Cañigueral, S. (2001). Activity of plant extracts on the respiratory burst and the stress protein synthesis. Phytomedicine, 8(1), 31–38. https://doi.org/10.1078/0944-7113-00018

Petrosillo, N., Viceconte, G., Ergonul, O., Ippolito, G., & Petersen, E. (2020). COVID-19, SARS and MERS: are they closely related? Clinical Microbiology and Infection. https://doi.org/10.1016/j.cmi.2020.03.026

Rakover, Y., Ben-Arye, E., & Goldstein, L. H. (2008). [The treatment of respiratory ailments with essential oils of some aromatic medicinal plants]. Harefuah, 147(10), 783–788, 838.

Rashed, K., Sahuc, M. E., Deloison, G., Calland, N., Brodin, P., Rouillé, Y., & Séron, K. (2014). Potent antiviral activity of Solanum rantonnetii and the isolated compounds against hepatitis C virus in vitro. Journal of Functional Foods, 11(C), 185–191. https://doi.org/10.1016/j.jff.2014.09.022

Reis, S. R. I. N., Valente, L. M. M., Sampaio, A. L., Siani, A. C., Gandini, M., Azeredo, E. L., D’Avila, L. A., Mazzei, J. L., Henriques, M. das G. M., & Kubelka, C. F. (2008). Immunomodulating and antiviral activities of Uncaria tomentosa on human monocytes infected with Dengue Virus-2. International Immunopharmacology, 8(3), 468–476. https://doi.org/10.1016/j.intimp.2007.11.010

Robson, B. (2020). COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles’ heel conserved region to minimize probability of escape mutations and drug resistance. Computers in Biology and Medicine, 103749. https://doi.org/10.1016/j.compbiomed.2020.103749

Rocha Martins, L. R., Brenzan, M. A., Nakamura, C. V., Dias Filho, B. P., Nakamura, T. U., Ranieri Cortez, L. E., & Garcia Cortez, D. A. (2011). In vitro antiviral activity from Acanthospermum australe on herpesvirus and poliovirus. Pharmaceutical Biology, 49(1), 26–31. https://doi.org/10.3109/13880209.2010.493177

Roumy, V., Ruiz, L., Ruiz Macedo, J. C., Gutierrez-Choquevilca, A. L., Samaillie, J., Encinas, L. A., Mesia, W. R., Ricopa Cotrina, H. E., Rivière, C., Sahpaz, S., Bordage, S., Garçon, G., Dubuisson, J., Anthérieu, S., Seron, K., & Hennebelle, T. (2020). Viral hepatitis in the Peruvian Amazon: Ethnomedical context and phytomedical resource. Journal of Ethnopharmacology, 255, 112735. https://doi.org/10.1016/j.jep.2020.112735

Ryding, O. (1995). Pericarp structure and phylogeny of the Lamiaceae-Verbenaceae-complex. Plant Systematics and Evolution, 198(1–2), 101–141. https://doi.org/10.1007/BF00985109

Sabini, M. C., Cariddi, L. N., Escobar, F. M., Mañas, F., Comini, L., Iglesias, D., Larrauri, M., Montoya, S. N., Sereno, J., Contigiani, M. S., Cantero, J. J., & Sabini, L. I. (2016). Potent inhibition of Western equine encephalitis virus by a fraction rich in flavonoids and phenolic acids obtained from Achyrocline satureioides. Brazilian Journal of Pharmacognosy, 26(5), 571–578. https://doi.org/10.1016/j.bjp.2016.05.004

Sánchez, M., Kramer, F., Bargardi, S., & Palermo, J. A. (2009). Melampolides from Argentinean Acanthospermum australe. Phytochemistry Letters, 2(3), 93–95. https://doi.org/10.1016/j.phytol.2008.12.007

Shen, K., Yang, Y., Wang, T., Zhao, D., Jiang, Y., Jin, R., Zheng, Y., Xu, B., Xie, Z., Lin, L., Shang, Y., Lu, X., Shu, S., Bai, Y., Deng, J., Lu, M., Ye, L., Wang, X., Wang, Y., & Gao, L. (2020). Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. En World Journal of Pediatrics. Institute of Pediatrics of Zhejiang University. https://doi.org/10.1007/s12519-020-00343-7

Simões, C. M. O., Falkenberg, M., Mentz, L. A., Schenkel, E. P., Amoros, M., & Girre, L. (1999). Antiviral activity of South Brazilian medicinal plant extracts. Phytomedicine, 6(3), 205–214. https://doi.org/10.1016/S0944-7113(99)80010-5

Susan van, D., Beulens, J. W. J., Yvonne T. van der, S., Grobbee, D. E., & Nealb, B. (2010). The global burden of diabetes and its complications: an emerging pandemic. European Journal of Cardiovascular Prevention & Rehabilitation, 17(1_suppl), s3–s8. https://doi.org/10.1097/01.hjr.0000368191.86614.5a

Thompson, K. D. (2006). Herbal extracts and compounds active against herpes simplex virus. En Advances in Phytomedicine (Vol. 2, Número C, pp. 65–86). Elsevier. https://doi.org/10.1016/S1572-557X(05)02005-2

Torres, R., Modak, B., Urzúa, A., Delle Monache, F., & Pujol, E. D. Y. C. A. (2002). Propiedades antivirales de compuestos naturales y semi-sinteticos de la resina de Heliotropium filifolium. Boletin de la Sociedad Chilena de Quimica.

Trujillo, F., & Lasso, C. A. (Carlos A. (2017). Biodiversidad del Río Bita, Vichada, Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Turner, N. J., & Hebda, R. J. (1990). Contemporary use of bark for medicine by two Salishan native elders of southeast Vancouver Island, Canada. Journal of ethnopharmacology, 29(1), 59–72. https://doi.org/10.1016/0378-8741(90)90098-e

Ubillas, R., Jolad, S. D., Bruening, R. C., Kernan, M. R., King, S. R., Sesin, D. F., Barrett, M., Stoddart, C. A., Flaster, T., Kuo, J., Ayala, F., Meza, E., Castañel, M., Mcmeekin, D., Rozhon, E., Tempesta, M. S., Barnard, D., Huffman, J., Smee, D., … Nakanishi, K. (1994). SP-303, an antiviral oligomeric proanthocyanidin from the latex of Croton lechleri (Sangre de Drago). Phytomedicine, 1(2), 77–106. https://doi.org/10.1016/S0944-7113(11)80026-7

Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. https://doi.org/10.1016/j.cell.2020.02.058

Weese, T. L., & Bohs, L. (2007). A Three-Gene Phylogeny of the Genus Solanum (Solanaceae). Systematic Botany, 32(2), 445–463. https://doi.org/10.1600/036364407781179671

Weil, A. T. (1978). Coca leaf as a therapeutic agent. American Journal of Drug and Alcohol Abuse, 5(1), 75–86. https://doi.org/10.3109/00952997809029262

WHO. (2020). Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected.

Yang, Y., Islam, S., Wang, J., Li, Y., & Chen, X. (2020). Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus ( SARS-CoV-2 ): A Review and Perspective. 16. https://doi.org/10.7150/ijbs.45538

Yao, X. J., Wainberg, M. A., & Parniak, M. A. (1992). Mechanism of inhibition of HIV-1 infection in Vitro by purified extract of Prunella vulgaris. Virology, 187(1), 56–62. https://doi.org/10.1016/0042-6822(92)90294-Y

Zhang, T., Wu, Q., & Zhang, Z. (2020). Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Current Biology, 30(7), 1346-1351.e2. https://doi.org/10.1016/j.cub.2020.03.022