Obtaining chitin from the shrimp (Litopenaeus vannamei) exoskeleton as coagulant - flocculant in waters of low turbidity
Main Article Content
Abstract
Chitin was obtained from shrimp exoskeleton, with a yield of 27.5 %, identifying the average values for demineralization and deproteinization with a weight percentage of 97.80±3.13 % and 32.18±0.14 % respectively. The biopolymer obtained was characterized by infrared spectroscopy with the presence of link stretch bands –OH at 3386 cm-1, –NH at 3124 cm-1, –C = O at 1644 cm-1 in addition to the characteristic absorptions of bonds –Csp3H of the carbon chain, which match the structure of the repeating unit of the biopolymer. Chitin was obtained as a white solid in the form of sheets, insoluble in water and diluted acids, soluble in concentrated hydrochloric acid and with a molecular weight of 202.978 ± 1.235 g/mol. The polymer behaves as a coagulant-flocculant of solids suspended in water, producing a reduction of turbidity levels. In experimental concentrations between 0.15-0.45 ppm of chitin, decreases in turbidity are observed, which according to the corresponding theoretical calculations are between 7.55-50.27 %; obtaining the maximum value of 55.84 % in the decrease of turbidity with 0.37 ppm of chitin. Thus, this biopolymer behaves as coagulant-flocculant and produces reduction in turbidity levels; this characteristic makes it a valid alternative to reduce the use of compounds of proven toxicity in the treatment of surface waters for human consumption.
Downloads
Article Details
- The authors agree to respect the academic information of other authors, and to assign the copyrights to the journal infoANALÍTICA, so that the article can be edited, published and distributed.
- The content of the scientific articles and the publications that appear in the journal is the exclusive responsibility of their authors. The distribution of the articles published in the infoANALÍTICA Journal is done under a Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
References
Breemen, V. (2001). Water Treatment Conventional an advance Treatmet Methods. Holanda: International Institute for Infrastructural, Hidraulic and Environmental Engineering.
Box, G., Hunter, J., & Hunter, W. (2005). Statistics for experiments design, innovation and discovery. New Jersey, USA: Wiley Interscience.
Costa, C., Teixeira, V., Delpech, M., Souza, J., & Costa, M. (2015). Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride. Carbohydrate Polymers, 245-250.
Cortizo, M. S., & Cortizo, A. M. (2011). Desarrollo y caracterización de matrices compuestas quitosano/polímero sintético para regeneración de tejido óseo. Universidad de La Plata, Ciencias Biológicas. La Plata: Universidad de la Plata.
Fuentes, L., Mendoza, I., Chávez, A., & Cedeño, O., (2018). Evaluación de quitina como coagulante para potabilización de aguas con alta turbidez. Impacto Científico, 12 (1)
Kelderman, & Kruis. (2001). Laboratory Course Aquatic Chemistry and its Aplications in Enviromental Engineering. Holland: Enviromental Enginering International Institute for Infrastructural Hydraulic and Enviromental Engineering.
López, M. A. (2012). Obtención y caracterización de quitosanos modificados: ingredientes funcionales con aplicaciones tecnológicas y biológicas en la industria alimentaria. Tesis Doctoral, Universidad Complutense de Madrid, Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Madrid.
Mármol, Z., Páez, G., Rincón, M., Araujo, K., Aiello, C. C., & Gutiérrez, C. (2011). Quitina y Quitosano polímeros amigables. Una revisión de sus aplicaciones. Revista Tecnocientífica URu, 53 - 57.
Matilainen, A., Vepsäläinen, M., & Sillanpää, M. (2010). Eliminación de materia orgánica natural por coagulación durante el tratamiento de agua potable: una revisión. Avances en coloides y ciencia de interfaz , 159 (2).
Montgomery, D., & Ruger, G. (2002). Applied Statistics and Probability for Engineers. The USA: John Wiley & Sons, Inc.
Nieves, T., & Ramón, J. (2014). Análisis del costo de producción de agua potable y de agua por pérdidas no contabilizadas en las plantas de producción de Tomebamba y Machángara. Tesis Maestría, Universidad Politécnica Salesiana, Cuenca.
Organización Mundial de la Salud. (2003). Aluminium in drinking water. Guias de la OMS para la calidad del agua potable. Ginebra.
Ramirez, A., Benítez, J., Rojas de Astudillo, L., & Gascué, B. (2016). Polymers materials type hydrogels: Review of their characterization by FTIR, DSC, SEM and TEM. Revista Latinoamericana de Metalurgia y Materiales
Restrepo, A., & Guarín, S. (2004). Valorización de residuos. Universidad de Antioquia, Escuela de Ingeniería Ambiental, Envigado.
Solis, R., Laines, J., & Hernandez, J. (2012). Mezclas con potencial coagulante para clarificar aguas superficiales. Revista Interamericana de Contaminación Ambiental (28), 229 -236.
Tostado, E. (2014). Neurotoxicidad de los metales pesados: plomo, mercurio y aluminio. Tesis maestría, Universidad de Valladolid, Facultad de Medicina, Valladolid.
Velásquez, C. L. (2003). Algunos usos del quitosano en sistemas acuosos. Revista Iberoamericana de Polímeros, 94.
Wade, L. (2012). Química Orgánica (Vol. 2). México, México: PEARSON.