Triazines adsorption by chitosan obtained from shrimp wasteby a calcium chloride/methanol/water mixture as a solvent

Main Article Content

Aranys Borja-Urzola
Marisela Bernal-González
Rolando García-Gómez
Ronny Flores-Ortega
María Durán-Domínguez-de-Bazúa

Abstract

The adsorption capacity of chitosan obtained from shrimp residues against herbicides of the triazine family was evaluated. The extraction of chitin and its transformation into chitosan was carried out using: the solvent MAC-141© patented by Universidad Nacional Autónoma de México (which consists of 1 mole of methanol, 4 moles of water, and 1 mole of calcium chloride) ultrasound and temperature. The characterization of the final compound was carried out by applying elemental analysis, infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and nuclear magnetic resonance. The chitosan obtained had a percentage of deacetylation in a range of 40-44 %, while the chemical characterization showed that it was possible to obtain a stable compound at temperatures lower than 280 °C and with pores on the surface. Chitosan was able to adsorb triazines dissolved in water and the process was favored at a pH of 3.6 and concentrations close to 1 mg/L.

Downloads

Download data is not yet available.

Article Details

Section
Cientific papers

References

Abdel-Rahman, R.M., Hrdina, R., Abdel-Mohsen, A.M., Fouda, M., Soliman, A.Y., Mohamed, F.K., Mohsin, K., & Pinto, T.D. (2015). Chitin and chitosan from Brazilian Atlantic Coast: Isolation, characterization and antibacterial activity. International Journal of Biological Macromolecules, 80, 107-120.

Antonino, R.S.C.M.D.Q., Fook, B.R.P.L., Lima, V.A.D.O., Rached, R.Í.D.F., Lima, E.P.N., Lima, R.J.D.S., Covas, C.A.P., & Fook, M.V.L. (2017). Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Marine Drugs, 15, 1–12.

Barbosa, M.A., Pêgo, A.P., & Amaral, I.F. (2011). Chitosan. In: Comprehensive Biomaterials. Ed. Ducheyne, P. Elsevier, Oxford, pp.221–237.

Barrera-Rodríguez, S., Flores-Ortega, R., Shirai-Matsumoto, C.K., & Durán-de-Bazúa, C. (2011). Extracción de quitina del cefalotórax de camarón para la elaboración de películas / Chitin extraction from shrimp cephalothorax and exoskeleton for films preparation. Vol. 10, Serie: TECNOLOGÍAS más LIMPIAS. Pub. AMCATH y Laboratorios 301, 302, 303 de Ing. Quím. Amb. y de Quím. Amb. Facultad de Química, UNAM. ISBN 978-607-7807-08-0. 75 pags. México D.F. México. 1ª y 2ª Eds. Disco compacto (2006, 2007). 3ª Ed. Mejorada. Disco compacto (2011).

Baxter, A., Dillion, M., Taylor, K., & Roberts, G. (1992). Improved method for I.R. determination of the degree of acetylation of chitosan. International Journal of Biological Macromolecules,14, 166–169.

Cao, W., Hu, S.S., Ye, L.H., Cao, J., Xu, J. J., & Pang, X.Q. (2015). Trace-chitosan-wrapped multi-walled carbon nanotubes as a new sorbent in dispersive micro solid-phase extraction to determine phenolic compounds. Journal of Chromatography A, 1390, 13–21.

Cárdenas, G., Cabrera, G., Taboada, E., & Miranda, S.P. (2004). Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. Journal Applied Polymer Science, 93, 1876–1885.

Carneiro, R., Taketa, T., Gomes Neto, R., Oliveira, J., Campos, E., de Moraes, M., da Silva, C., Beppu, M., & Fraceto, L. (2015). Removal of glyphosate herbicide from water using biopolymer membranes. Journal of Environmental Management, 151, 353-360.

Chen, P.-S., Haung, W.-Y., & Huang, S.-D. (2014). Analysis of triazine herbicides using an up-and-down-shaker-assisted dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry. Journal of Chromatography B, 955–956, 116–123.

Dhillon, G.S., Kaur, S., Brar, S.K., & Verma, M. (2012). Green synthesis approach: Extraction of chitosan from fungus mycelia. Critical Reviews in Biotechnology, 33(4), 379–403.

Domszy, J.G., & Roberts, G.A.F. (1985). Evaluation of infrared spectroscopic techniques for analysing chitosan. Macromolecular Chemistry,186, 1671–1677.

Dos Santos, Z.M., Caroni, A.L.P.F., Pereira, M.R., da Silva, D.R., & Fonseca, J.L.C. (2009). Determination of deacetylation degree of chitosan: A comparison between conductometric titration and CHN elemental analysis. Carbohydrate Research, 344(18), 2591–2595.

Espíndola-Cortés, A., Moreno-Tovar, R., Bucio, L., Gimeno, M., Ruvalcaba-Sil, J.L., & Shirai, K. (2017). Hydroxyapatite crystallization in shrimp cephalothorax wastes during subcritical water treatment for chitin extraction. Carbohydrate Polymers, 172, 332–341.

Flores, R., Barrera-Rodríguez, S., Shirai, K., & Durán-de-Bazúa, C. (2007). Chitin sponge, extraction procedure from shrimp wastes using green chemistry. Journal of Applied Polymer Science, 104, 3909–3916.

Flores, R., Barrera-Rodríguez, S., Shirai-Matsumoto, C.K., & Durán-de-Bazúa, C. (2006). Obtención de esponjas de quitina a partir de cefalotórax de camarón para empaques. AlimenPack, 2(4):26-28. ISSN 1870-5782.

Flores-Ortega, R.A. (2004). Formación de películas de quitina a partir de desechos de camarón por métodos ecológicos. Tesis de Maestría en Ciencias. Programa de Maestría y Doctorado en Ciencias Químicas (Orientación: Química Ambiental). UNAM. Defensa: Agosto20. Ciudad de México. México.

Flores-Ortega, R.A. (2008). Obtención y caracterización de esponja de quitina a partir de cefalotórax de camarón. Tesis de Doctorado en Ciencias. Programa de Maestría y Doctorado en Ciencias Químicas. UNAM. Defensa: Abril 25. Ciudad de México. México.

Flores-Ortega, R.A., Barrera-Rodríguez, S., & Durán-Domínguez-de-Bazúa, M.C. (2004). Extracción ecológica de quitina y subproductos. Patente Núm. 264482. Solicitud de Registro: Octubre 1, 2004. UNAM, Facultad de Química. Instituto Mexicano para la Protección Industrial, IMPI. PA/a/2004/009517. Otorgada el 12 de febrero de 2009, México.

Hirai, A., Odani, H., & Nakajima, A. (1991). Determination of degree of deacetylation of chitosan by H NMR spectroscopy. Polymer Bulletin, 26(1), 87–94.

Kasaai, M., Arul, J., & Charlet, G. (2000). Intrinsic viscosity — Molecular weight relationship for chitosan intrinsic viscosity – molecular weight relationship for chitosan. Journal of Polymer Science Part B Polymer Physics, 38, 2591–2598.

Kaur, S., & Dhillon, G.S. (2015). Recent trends in biological extraction of chitin from marine shell wastes: A review. Critical Reviews in Biotechnology, 8551(1), 44–61.

Kumari, S., Rath, P., Kumar Annamareddy, S.H., & Tiwari, T.N. (2015). Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environmental Technology and Innovation, 3, 77–85.

Kumari, S., Kumar Annamareddy, S.H., Abanti, S., & Kumar Rath, P. (2017). Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. International Journal of Biological Macromolecules, 104, 1697–1705.

Leceta, I., Guerrero, P., & De La Caba, K. (2013). Functional properties of chitosan-based films. Carbohydrate Polymers, 93(1), 339–346.

Lopes, C., Antelo, L.T., Franco-Uría, A., Alonso, A., & Pérez-Martín, R. (2018). Chitin production from crustacean biomass: Sustainability assessment of chemical and enzymatic processes. Journal of Cleaner Production, 172, 4140-4151.

Marei, N.H., El-Samie, E.A., Salah, T., Saad, G.R., & Elwahy, A.H.M. (2016). Isolation and characterization of chitosan from different local insects in Egypt. International Journal of Biological Macromolecules, 82, 871–877.

Mohammed, M.H., Williams, P.A., & Tverezovskaya, O. (2013). Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocolloyds, 31, 166–171

Mojarrad, J.S. Nemati, M., Valizadeh, H., Ansarin, M., & Bourbour, S. (2007). Preparation of glucosamine from exoskeleton of shrimp and predicting production yield by response surface methodology. Journal of Agricultural and Food Chemistry, 55(6), 2246–2250.

Naing, N., Li, S., & Lee, H. (2016). Application of porous membrane-protected chitosan microspheres to determine benzene, toluene, ethylbenzene, xylenes and styrene in water. Journal of Chromatography A, 1448, 42–48.

Niu, Y., Ying, D., Li, K., Wang, Y., & Jia, J. (2017). Adsorption of heavy-metal ions from aqueous solution onto chitosan-modified polyethylene terephthalate (PET). Research on Chemical Intermediates, 43, 4213-4225.

Paulino, A.T., Simionato, J.I., Garcia, J.C., & Nozaki, J. (2006). Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate Polymers, 64(1), 98–103.

Peng, L.-Q., Li, Q., Chang, Y.-X., An, M., Yang, R., Tan, Z., Hao, J., Cao, J., Xu, J.-J. & Hu, S.-S. (2016). Determination of natural phenols in olive fruits by chitosan assisted matrix solid-phase dispersion microextraction and ultrahigh performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry. Journal of Chromatography A, 1456, 68–76.

Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57, 397–430.

Sagheer, F., Al-Sughayer, M.A., Muslim, S., & Elsabee, M.Z. (2009). Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate Polymers, 77(2), 410–419.

Sakkayawong, N., Thiravetyan, P., & Nakbanpote, W. (2005). Adsorption mechanism of synthetic reactive dye wastewater by chitosan. Journal of Colloid and Interface Science, 286, 36-42.

Sarabia-Bañuelos, P. (2011). Aprovechamiento integral de residuos de crustáceos: obtención de quitina y quitosana del cefalotórax de camarón por métodos ecológicos. Tesis de Maestría en Ciencias. Programa de Maestría y Doctorado en Ciencias Químicas. UNAM. Defensa: Noviembre 18. Ciudad de México. México.

Singh, S., Kumar, V., Datta, S., Singh, S., Dhanjal, D.S., Garg, R., Kaur, P., Sharma, K., & Singh, J. (2020). Challenges and future perspectives of nanotoxicology. En Siddhardha, B., Dyavaiah, M., Kasinathan, K., eds. Model organisms to study biological activities and toxicity of nanoparticles. Springer Nature, Singapur. P. 454.

Tolesa, L.D., Gupta, B.S., & Lee, M.J. (2019). Chitin and chitosan production from shrimp shells using ammonium-based ionic liquids. International Journal of Biological Macromolecules, 130, 818–826.

Yen, M.T., Yang, J.H., & Mau, J.L. (2009). Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 75(1), 15–21.

Younes, I., Hajji, S., Frachet, V., Rinaudo, M., Jellouli, K., & Nasri, M. (2014). Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan. International Journal of Biological Macromolecules, 69, 489–498.

Yuan, B., Qiu, L.Q., Su, H.Z., Cao, C.L., & Jiang, J.H. (2015). Schiff base – Chitosan grafted l-monoguluronic acid as a novel solid-phase adsorbent for removal of Congo red. International Journal of Biological Macromolecules, 82, 355-360.

Zhao, G., Song, S., Wang, C., Wu, Q., & Wang, Z. (2011). Determination of triazine herbicides in environmental water samples by high-performance liquid chromatography using graphene-coated magnetic nanoparticles as adsorbent. Analytica Chimica Acta, 708, 155–159.

Ziegler-Borowska, M., Chełminiak, D., & Kaczmarek, H. (2015). Thermal stability of magnetic nanoparticles coated by blends of modified chitosan and poly(quaternary ammonium) salt.Journal of Thermal Analysis and Calorimetry, 119, 499–506.