Avoidable deaths associated with the implementation of urban green infrastructure in Quito

Main Article Content

Sebastián Rodríguez
https://orcid.org/0000-0002-7518-0769
Alexandra Mena
https://orcid.org/0000-0003-0363-7253
Daniel Garzón
https://orcid.org/0000-0002-8024-3509
Francisco Ramírez Cevallos
https://orcid.org/0000-0002-7310-2521
David Chuquer-Sola
https://orcid.org/0000-0003-3223-7590

Abstract

In recent decades, the economic development of Quito has been accompanied by deterioration in its air quality, mainly due to the progressive increase in its vehicle fleet. Given this, the environmental authority of the area registers concentrations that exceed national and international air quality standards in the parameters of PM10, PM2.5, and O3. With this scenario, the implementation of urban green infrastructure (UGI) emerges as an alternative for improving air quality in microenvironments; however, its costs limit its application. The work presented estimates, through the AP-HRA methodology, the economic and public health effects that would be obtained as a result of the aggressive implementation of UGI in eight parishes in Quito. Results generated are encouraging given that a 30 % reduction in PM10 and O3 and 1 % in PM2.5, could prevent 190 deaths annually in the studied area, with an economic benefit for the society of USD 139.7 million. The estimates presented can serve as a tool for decision-makers to implement public policies that promote the implementation of UGI in public and private spaces.

Downloads

Download data is not yet available.

Article Details

Section
Cientific papers

References

Abhijith, K. V., Kumar, P., Gallagher, J., McNabola, A., Baldauf, R., Pilla, F., Broderick, B., Di Sabatino, S., & Pulvirenti, B. (2017). Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review. Atmospheric Environment, 162, 71–86. https://doi.org/10.1016/j.atmosenv.2017.05.014

Alonso Fustel, E., Martínez Rueda, T., Cambra Contín, K., Lopez Carrasco, L., Boldo Pascua, E., Zorrilla Torras, B., Daponte Codina, A., Aguilera Jiménez, I., & Medina, S. (2005). Evaluación en cinco ciudades españoles del impacto en salud de la contaminación atmosférica por partículas. Proyecto europeo APHEIS. Revista Española de Salud Pública, 79(2), 297–308.

Banco Mundial. (2019). INB per cápita, PPA (dólares internacionales constantes de 2011).

Catalán-Vasquez, M. (2006). Estudio de la percepción pública de la contaminación del aire y sus riesgos para la salud: perspectivas teóricas y metodológicas. Revista Del Instituto Nacional de Enfermedades Respiratorias, 19(1), 28–37. http://www.scielo.org.mx/pdf/iner/v19n1/v19n1a4.pdf

Chuquer - Sola, D., Ampudia-Vásquez, S., Puertas, C., Bustamante, L., Reina, C., & Ramírez, F. (2018). Contaminación del aire a filo de calle en Quito, caso estudio Guayaquil y Espejo. Perfiles, 2(20), 90–99. http://ceaa.espoch.edu.ec:8080/revista.perfiles/Articuloshtml/Perfiles20Art11/Perfiles20Art11.xhtml

CPI Inflation Calculator. (2019). Inflation Calculator.

Echániz Pellicer, G., Garibay Bravo, V., & Rojas Bracho, L. (2011). Guía para evaluar los impactos en la salud por la instrumentación de medidas de control de la contaminacion atmosférica (A. M. Sanchéz Mora (ed.); 1st ed.). Instituto Nacional de Ecología - Secretaria de Medio Ambiente y Recursos Naturales.

EPA. (2008). Environmental Benefits Mapping and Analysis Program –Community Edition : User’s Manual. Environmental Protection Agency.

Herdoiza, J. (2017). Instrucciones administrativas y flujos de procedimiento para aprobar el incremento de número de pisos por suelo creado por sobre lo establecido en el PUOS vigente, en el Distrito Metropolitano de Quito. http://gobiernoabierto.quito.gob.ec/Archivos/puos/Resolucion STHV-014-2017_Incremento Edificabilidad.pdf

Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B., & Kaufman, J. D. (2013). Long-term air pollution exposure and cardio- respiratory mortality: a review. Environmental Health, 12(1), 43. https://doi.org/10.1186/1476-069X-12-43

INECC-México. (2017). Estimación de impactos en la salud por contaminación atmosférica en la región centro del país y alternativas de gestión. http://cambioclimatico.gob.mx:8080/xmlui/handle/publicaciones/52

Instituto Nacional de Estadisticas y Censos. (2019). Estadísticas Vitales. https://www.ecuadorencifras.gob.ec/defunciones-generales-2019/

Jayasooriya, V. M., Ng, A. W. M., Muthukumaran, S., & Perera, B. J. C. (2017). Green infrastructure practices for improvement of urban air quality. Urban Forestry and Urban Greening, 21, 34–47. https://doi.org/10.1016/j.ufug.2016.11.007

Jiménez, M., Ferrer, A., Chaves, L., Navarro, O., Marín, J., Cárdenas, J., & Rodríguez, S. (2015). Análisis preliminar de un cuestionario de evaluación de la percepción social de la contaminación atmosférica. REVISTA DE SALUD PÚBLICA, 17(5). https://doi.org/10.15446/rsap.v17n5.3847

Kochi, I., Hubbell, B., & Kramer, R. (2006). An Empirical Bayes Approach to Combining and Comparing Estimates of the Value of a Statistical Life for Environmental Policy Analysis. Environmental & Resource Economics, 34(3), 385–406. https://doi.org/10.1007/s10640-006-9000-8

Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P., Herry, M., Horak, F., Puybonnieux-Texier, V., Quénel, P., Schneider, J., Seethaler, R., Vergnaud, J.-C., & Sommer, H. (2000). Public-health impact of outdoor and traffic-related air pollution: a European assessment. The Lancet, 356(9232), 795–801. https://doi.org/10.1016/S0140-6736(00)02653-2

Martínez-Vásquez, S. (2008). Externalidades Ambientales Asociadas a la Contaminación del Aire [Universitat Autonoma de Barcelona]. https://dialnet.unirioja.es/servlet/tesis?codigo=182186

Molina, L. T., & Molina, M. J. (2002). Air Quality in the Mexico Megacity (L. T. Molina & M. J. Molina (eds.); Vol. 2). Springer Netherlands. https://doi.org/10.1007/978-94-010-0454-1

MSP. (2016). Información estadística y geográfica de salud. Mortalidad Por Grupos de Edad y Lugar de Ocurrencia 2016. https://www.salud.gob.ec/informacion-estadistica-de-produccion-de-salud/

Nowak, D. J., Hirabayashi, S., Bodine, A., & Hoehn, R. (2013). Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environmental Pollution, 178, 395–402. https://doi.org/10.1016/j.envpol.2013.03.050

OECD. (2011). Valuing Mortality Risk Reductions in Regulatory Analysis of Environmental, Health and Transport Policies: Policy Implications. https://www.oecd.org/env/tools-evaluation/48279549.pdf

Ortiz-Durán, E. Y., & Rojas-Roa, N. Y. (2013). Estimación de los beneficios económicos en salud asociados a la reducción de PM10 en Bogotá. Rev Salud Publica (Bogota), 15(1), 90–102. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124-00642013000100009

Pugh, T. A. M., MacKenzie, A. R., Whyatt, J. D., & Hewitt, C. N. (2012). Effectiveness of Green Infrastructure for Improvement of Air Quality in Urban Street Canyons. Environmental Science & Technology, 46(14), 7692–7699. https://doi.org/10.1021/es300826w

Ramírez-Cevallos, F., Davis, M., Chuquer-Solá, D., & Vallejo-Espinosa, A. (2019). CALIDAD DE AIRE EN EL CENTRO HISTÓRICO DE QUITO. Revista de Diseño Urbano & Paisaje. DU&P, 35(1), 50–61. http://dup.ucentral.cl/dup_35/francisco_ramirez.pdf

Raysoni, A., Armijos, R., Weigel, M., Echanique, P., Racines, M., Pingitore, N., & Li, W.-W. (2017). Evaluation of Sources and Patterns of Elemental Composition of PM2.5 at Three Low-Income Neighborhood Schools and Residences in Quito, Ecuador. International Journal of Environmental Research and Public Health, 14(7), 674. https://doi.org/10.3390/ijerph14070674

Rodas, M., & Arias, V. (2018). Informe de calidad del aire 2017. http://www.quitoambiente.gob.ec/ambiente/index.php/informes#informe-calidad-del-aire-2017

Sicard, P., Agathokleous, E., Araminiene, V., Carrari, E., Hoshika, Y., De Marco, A., & Paoletti, E. (2018). Should we see urban trees as effective solutions to reduce increasing ozone levels in cities? Environmental Pollution, 243, 163–176. https://doi.org/10.1016/j.envpol.2018.08.049

Su, Y., Liu, G., & Zhang, L. (2018). Research on the Design of Human Settlement System and Personal Air Purification System Under the Background of Internet of Things. In Lecture Notes in Computer Science (3rd Intern, pp. 106–118). https://doi.org/10.1007/978-3-319-94370-1_8

Tallis, M. J., Amorim, J. H., Calfapietra, C., Freer-Smith, P., Grimmond, S., & Kotthaus, S. (2015). The impacts of green infrastructure on air quality and temperature. In D. Sinnett, N. Smith, & S. Burgess (Eds.), Handbook on Green Infrastructure (pp. 30–49). Edward Elgar Publishing. https://doi.org/10.4337/9781783474004.00008

Turner, M. C., Jerrett, M., Pope, C. A., Krewski, D., Gapstur, S. M., Diver, W. R., Beckerman, B. S., Marshall, J. D., Su, J., Crouse, D. L., & Burnett, R. T. (2016). Long-Term Ozone Exposure and Mortality in a Large Prospective Study. American Journal of Respiratory and Critical Care Medicine, 193(10), 1134–1142. https://doi.org/10.1164/rccm.201508-1633OC

WHO. (2016a). Ambient air pollution: A global assessment of exposure and burden of disease. https://www.who.int/phe/publications/air-pollution-global-assessment/en/

WHO. (2016b). Health risk assessment of air pollution – general principles. http://www.euro.who.int/__data/assets/pdf_file/0006/298482/Health-risk-assessment-air-pollution-General-principles-en.pdf?ua=1

Woodruff, T. J., Darrow, L. A., & Parker, J. D. (2008). Air Pollution and Postneonatal Infant Mortality in the United States, 1999–2002. Environmental Health Perspectives, 116(1), 110–115. https://doi.org/10.1289/ehp.10370

Yang, J., McBride, J., Zhou, J., & Sun, Z. (2005). The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening, 3(2), 65–78. https://doi.org/10.1016/j.ufug.2004.09.001