Non-linear fitting of electrochemical techniques

Main Article Content

Carlos Cevallos-Morillo

Abstract

Data analysis made with non-linear fitting are not very common, a possible cause is the inaccessibility to specialized software that require license as Zview® or DigiElch. Electrochemical techniques are useful for the determination of kinetics, thermodynamic of cells parameters. The non-linear fitting can be made using Solver into a spreadsheet of Microsoft Excel. This paper present two electrochemical techniques as examples of the developed methodology. Values of area and heterogeneous electron transfer rate constant were calculated from chronoamperometry and cyclic voltammetry of hexacyanoferrate(III) onto platinum ultramicroelectrodes.

Downloads

Download data is not yet available.

Article Details

Section
Cientific papers

References

Metals by flame atomic absorption spectrometry (2018). In Standard Methods For the Examination of Water and Wastewater. American Public Health Association. https://doi.org/doi:10.2105/SMWW.2882.043

-N nitrogen (2018). In Standard Methods For the Examination of Water and Wastewater. American Public Health Association. https://doi.org/doi:10.2105/SMWW.2882.086

-P phosphorus (2018). In Standard Methods For the Examination of Water and Wastewater. American Public Health Association. https://doi.org/doi:10.2105/ SMWW.2882.093

chemical oxygen demand (COD) (2018). In Standard Methods For the Examination of Water and wastewater. American Public Health Association. https://doi.org/doi:10.2105/SMWW.2882.103

Aelterman, P., Rabaey, K., Clauwaert, P., & Verstraete, W. (2006). Microbial fuel cells for wastewater treatment. Water Science and Technology, 54(8), 9–15. https://doi.org/10.2166/wst.2006.702

Bassante, N. (2018). Evaluación del efecto de polímeros conductores en el tratamieno de aguas residuales domésticas utilizando celdas de combustible microbianas. Universidad Central del Ecuador.

Behera, M., & Ghangrekar, M. M. (2011). Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness. Water Science and Technology, 64(12), 2468–2473. https://doi.org/10.2166/wst.2011.822

Buitrón, G., & Cervantes-Astorga, C. (2013). Performance evaluation of a low-cost microbial fuel cell using municipal wastewater. Water, Air, and Soil Pollution, 224(3). https://doi.org/10.1007/s11270-013-1470-z

Choi, S. (2015). Microscale microbial fuel cells: Advances and challenges. Biosensors and Bioelectronics, 69, 8–25. https://doi.org/10.1016/j.bios.2015.02.021

Do, M. H., Ngo, H. H., Guo, W. S., Liu, Y., Chang, S. W., Nguyen, D. D., Nghiem, L. D., & Ni, B. J. (2018). Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. Science of the Total Environment, 639, 910–920. https://doi.org/10.1016/j.scitotenv.2018.05.136

Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757–768. https://doi.org/https://doi.org/10.1016/j.jclepro.2016.12.048

Hernandez-Fernandez, F. J., de Los Rios, A. P., Salar-Garcia, M. J., Ortiz-Martinez, V. M., Lozano-Blanco, L. J., Godinez, C., Tomas-Alonso, F., & Quesada-Medina, J. (2015). Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Processing Technology, 138, 284–297. https://doi.org/10.1016/j.fuproc.2015.05.022

Li, M., Zhou, M., Tian, X., Tan, C., Cameron, T., Hassett, D. J., & Gu, T. (2018). Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity Ming. Biotechnology Advances, December 2017, #pagerange#. https://doi.org/10.1016/j.biotechadv.2018.04.010

Logan, B. E. (2007). Microbial Fuel Cells. John Wiley & Sons, Inc. https://doi.org/ 10.1002/

Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192. https://doi.org/10.1021/es0605016

Logan, B. E., & Rabaey, K. (2012). Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 337(6095), 686–690. https://doi.org/10.1126/science.1217412

Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology, 23(6), 291–298. https://doi.org/10.1016/j.tibtech.2005.04.008

Rea, H. S. (2017). Evaluación de la biomasa producida por el tratamiento de aguas residuales domésticas usando celdas de combustible microbiano (MFCs) como posible abono agricola. Universidad Central del Ecuador.

Sacco, N. J., Figuerola, E. L. M., Pataccini, G., Bonetto, M. C., Erijman, L., & Cortón, E. (2012). Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells. Bioresource Technology, 126, 328–335. https://doi.org/https://doi.org/10.1016/j.biortech.2012.09.060

Sivasankar, V., Mylsamy, P., & Omine, K. (Eds.). (2018). Microbial Fuel Cell Technology for Bioelectricity. Springer International Publishing. https://doi.org/10.1007/978-3-319-92904-0

Wei, B., Tokash, J. C., Chen, G., Hickner, M. A., & Logan, B. E. (2012). Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells. RSC Advances, 2(33), 12751–12758. https://doi.org/10.1039/C2RA21572A

Zhang, F., Cheng, S., Pant, D., Bogaert, G. Van, & Logan, B. E. (2009). Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochemistry Communications, 11(11), 2177–2179. https://doi.org/https://doi.org/10.1016/j.elecom.2009.09.024