THEORETICAL AND COMPUTATIONAL STUDY OF THE PYROLYSIS OF 4-CHLORO-1-BUTANOL IN THE GAS PHASE USING DENSITY FUNCTIONAL THEORY
Main Article Content
Abstract
The mechanism and kinetics of gas-phase pyrolysis of 4-chloro-1-butanol at DFT level were investigated. The reaction gives as products tetrahydrofuran, formaldehyde, propene and hydrogen chloride. The molecular elimination mechanism suggests two reaction pathways. The first pathway occurs through a four-member cyclic transition state, where the theory level WB97XD/6-31G++(d,p) showed results close to experimental kinetic parameters. The second pathway occurs in two stages, the first is given by a cyclic transition state of four members and the second with a cyclical transition state of six members, the levels of theory that gave results closest to the experimental ones were B3LYP/6-31G(d,p) and WB97XD/6-31G++(d,p), for first and second stage respectively. The breakdown of the C-Cl bond, due to its polarization at the bond, is the velocity-determining step in both reaction pathways. The NCI topological analysis was used to determine the non-covalent interactions of all structures. The variation of the strength of the bonds involved in the transitions was measured by the IBSI index, to verify the proposed mechanism.
Downloads
Article Details
- The authors agree to respect the academic information of other authors, and to assign the copyrights to the journal infoANALÍTICA, so that the article can be edited, published and distributed.
- The content of the scientific articles and the publications that appear in the journal is the exclusive responsibility of their authors. The distribution of the articles published in the infoANALÍTICA Journal is done under a Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
References
Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N., & Yang, W. (2011). NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. Journal of Chemical Theory and Computation, 7(3), 625–632.
Chuchani G. (1995). The Chemistry of Halides, Pseudo-Halides and Azides, (Chapter 19), E.S. Patai and Z. Rapopport, eds, Wiley, New York, 1069.
Chuchani G. and Martín I. (1986). The elimination kinetics of methoxyalkyl chlorides in the gas phase. Evidence for neighboring group participation. J. Phys. Chem., 90, 431.
Chuchani, G., R.M. & Martín, I. (1987). Neighboring Group Participation in the Pyrolysis Kinetics of 4-Chloro-1-Butanol in the Gas Phase, Instituto Venezolano de Investigaciones científicas (I.V.I.C.).
Foresman B.J. & Frish Æ. (1996). Exploring chemistry with electronic methods, 2nd, Edition Gaussian Inc Pittsburg PA.
Gaussian NBO version 16., incluída en Gaussian 16.
Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams- Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. (2016). Gaussian, Inc., Wallingford CT.
Klein J., Khartabil H, Boisson, J.-C., Contreras-García, J., Piquemal J.-P. & Hénon E. (2020), New Way for Probing Bond Strength. J. Phys. Chem. A, 124, 1850-1860.
Maccoll A. (1969). Heterolysis and the pyrolysis of alkyl halides in the gas phase. Chem Rev., 69, 33.
Maccoll A. & Thomas P.J. (1955). A correlation between the rates of unimolecular pyrolysis of alkyl halides in the gaseous phase and sni rates in solution. Nature 176, 392.
Maccoll A. & Thomas P. J. (1967). Molecular reactions in the gas phase and the quasiheterolytic hypothesis. Prog. React Kinet., 4, 119.
Moyano A., Pericá M.A. & Valenti E. (1989). A theoretical study on the mechanism of the thermal and the acid-catalyzed decarboxylation of 2-oxetones (β-lactones). J Org Chem., 54, 573
Smith G.G. & Kelly F.W. (1971). Structure relationships in homogeneous gas-phase reactions: thermolyses and rearrangements. Progr. React. Kinet., 8, 75.
Scale factors in http: //cccbdb.nist.gov/vibscalejust.asp, (b) Database of Frequency Scaling Factors for Electronic Structure Methods https: //comp.chem.umn.edu/freqscale/index.html.
Tian L. & Feiwu Ch. (2012). Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comput. Chem., 33, 580-592.
VMD - Visual Molecular Dynamics [Internet]. Ks.uiuc.edu. 2021.
Wiberg K.B., (1968). Application of the Pople-Santry-Segal complete neglect of differential overlap method to the cyclopropyl-carbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron. 24, 1083-1096.