ELECTROCHEMENERGY AND CLIMATE CHANGE: A REVIEW
Main Article Content
Abstract
The current situation requires additional and urgent attention from Science, Engineering and Technology regarding environmental, climatic, and sanitary control, for the well-being and life over the planet. The scientific area that concerns this work, Electrochemenergy (EC.E), involves important contributions on this subject and there are many and varied new contributions to be made. This review presents some of these studies, some of them completed, others in progress and others to be carried out; it is important to highlight the current importance of working together with the fields of nanoscience and nanocatalysis in the scientific area.
Downloads
Article Details
- The authors agree to respect the academic information of other authors, and to assign the copyrights to the journal infoANALÍTICA, so that the article can be edited, published and distributed.
- The content of the scientific articles and the publications that appear in the journal is the exclusive responsibility of their authors. The distribution of the articles published in the infoANALÍTICA Journal is done under a Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
References
Arenal- Mendoza, R.A., Ángeles-Jiménez, F.J. & Ávalos-González, F.R.A. (2010). Celdas de Combustible: Diseño, simulación, caracterización y aplicación a la industria. Automotriz. Proyectos de Ingeniería Mecatrónica. Instituto Tecnológico y de estudios superiores de monterrey campus ciudad de México. Ed. Escuela de ingeniería y arquitectura departamento de ingeniería mecatrónica
Asensio, P. (2020) Hidrógeno y pila de combustible. Energías renovables. p., (1-20) Ed. Fundación de Energía de la Comunidad de Madrid
Balladores, Y., Márquez, J., Martínez, Y., Márquez, O.P., Manfredy, L. & López-Rivera, S.A. (2014). Double Potentiostatic Deposition and Characterization of CdIn2Se4 Semiconductor, 4(8):439-446.
Barbir, F. (2005). PEM electrolysis for production of Hydrogen from renewable energy sources. Sol. Energy, 78 (5), 661–669. doi:10.1016/j.solener.2004.09.003
Basirun, W.J., Pletcher, D. & Saraby-Reintjes, A. (1996). Studies of platinum electroplating baths Part IV: Deposits on copper from Q bath. Journal of Applied Electrochemistry, 26(8), 873–880. doi:10.1007/bf00683750
Baxter, J.B., Bian, Z., Chen, G., Danielson, D., Dresselhaus, M.S., Fedorov, A.G., Fishe, T., Jones, C.W., Maginn, E., Kortshagen, U., Manthiram, A., Nozik, A., Sholl, D. & Wu, Y. (2009). Nanoscale design to enable the revolution in renewable energy. Energy Environ. Sci., 2, 559–588. Birck and NCN Publications. Paper 405.
Bhandari, R., Trudewind, C.A. & Zapp, P. (2014) Life Cycle Assessment of Hydrogen Production via Electrolysis Review. Journal of Cleaner Production, 85,151-163.
Bisquert, J. (2005). Sistemas electroquímicos y nanotecnología para el almacenamiento de energía limpia. Univ. Jaume I, 12071 Castelló, España. https://d1wqtxts1xzle7.cloudfront.net/51289584/2005_almacen_energia-
Bremner, S.P., Levy, M.Y. & Honsberg, C.B (2008). Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Progress in Photovoltaics: Research and Applications, 16(3), 225–233. doi:10.1002/pip.799
Casadevall, C., Call, A., Codolá, Z., Acuña-Pares, F. & Lloret-Fillol, J. (2016). Catalizadores para la conversión de energía solar en enlaces químicos. Anales de Química. 112(3), 133-141.
Chen, M., Zhang, Y., Xing, G., Chou, S.L. & Tang, Y. (2021). Electrochemical energy storage devices working in extreme conditions. Energy & Environmental Science, 14(6), 3323–3351. doi:10.1039/d1ee00271f
Datta, D., Mukherjee, P.P. & Chiu, W.K. (2021) Special Section on Mechanics of Electrochemical Energy Storage and Conversion J. Electrochem. En. Conv. Stor., 18(4) 040301
De Bastiani, M., Mirabelli, A.J., Hou, Y., Gota, F., Aydin, E., Allen, T.G., Troughton, J., Subbiah, A.S., Isikgor, F.H., Liu, J., Xu, L., Chen, B., Van Kerschaver, E., Baran, D., Fraboni, B., Salvador, M.F., Paetzold, U.W., Sargent, E.H. & De Wolf, S. . Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. Nature Energy, 6(2), 167–175. doi:10.1038/s41560-020-00756
Dincer, I. (2012). Green methods for hydrogen production. International Journal of Hydrogen Energy, 37(2) 1954-1971.
Dincer, I. & Acar, C. (2015) Review and Evaluation of Hydrogen Production Methods for Better Sustainability. International Journal of Hydrogen Energy, 40(34),11094-11111.
Dunn, J. (2007). Hydrogen Futures: Toward a Sustainable Energy System. International Journal of Hydrogen Energy, 27(3) 235-264. https://doi.org/10.1016/S0360-3199(01)00131-8
El-Shafie, M., Kambara, S. & Hayakawa, Y. (2019) Hydrogen Production Technologies Overview. Journal of Power and Energy Engineering, 7(1) 107-154. https://doi.org/10.4236/jpee.2019.71007
Esteve-Adell, I., Gil-Agustí, M., Saenz de Zaitegui, L.Z., Quijano-López, A. & García-Pellicer, M. (2020). Aplicaciones del grafeno en sistemas de almacenamiento de energía. Anales de. Química, 116(4) 233-240
Faiz, A., Weaver, C.S. & Walsh, M.P. (1996). Air Pollution from Motor Vehicles: Standards and Technologies for Controlling Emissions. World Bank Publications. 227. https://doi.org/10.1596/0-8213-3444-1
Fujishima, A. & Honda, K. (1972). Water Photolysis on TiO2 electrodes. Nature. 238(37-38) https://doi.org/10.1038/238037a0.
Geisz, J.F., France, R.M., Schulte, K.L., Steiner, M.A., Norman, A.G., Guthrey, H.L., Young, M.R., Tao Song, T. & Moriarty, T. (2020). Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat Energy, 5, 326–335 https://doi.org/10.1038/s41560-020-0598-5 (2020)
Graetzel, M. (2006). Generation of hydrogen from the solar photolysis of water: Hydrogen Conference. UC Santa Bárbara, USA August 20-25 http://www.icmr.ucsb.edu/programs/archive/documents/Graetzel.pdf
Green, MA. (2002). Third generation photovoltaics: solar cells for 2020 and beyond. Physica E: Low-Dimensional Systems and Nanostructures, 14(1-2), 65–70. doi:10.1016/s1386-9477(02)00361-2
Gregory, A.J., Levason, W. & Pletche,r D. (1993). Studies of platinum electroplating baths. Journal of Electroanalytical Chemistry, 348(1-2)211–219. doi:10.1016/0022-0728(93)80133-3
Guía de la Energía Solar (2006). Dirección General de Industria, Energía y Minas. Obra Social Caja Madrid. Es. www.obrasocialcajamadrid.es
Ho, P., Thogiti, S., Lee, Y.H. & Kim, J.H. (2017). Discrete photoelectrodes with dyes having different absorption wavelengths for efficient cobalt-based tandem dye-sensitised solar cells. Scientific Reports, 7(1). doi:10.1038/s41598-017-02480-y
Hodes, G. & Cahen, D. (1986). Electrodeposition of CuInSe2 and CuInS2 films. Solar Cells, 16, 245–254. doi:10.1016/0379-6787(86)90088-8
https://analesdequimica.es/index.php/AnalesQuimica/article/view/1334/2212
Kruse, D.A. (2011). Synthesis and characterization of core-shell nanomaterials for solar production of hydrogen fuel. MSc Physics, University of New Mexico, Albuquerque, New Mexico. Physics & astronomy etds pp. 1-87
Le Penven, R., Levason, W. & Pletcher, D. (1992). Studies of platinum electroplating baths Part I: The chemistry of a platinum tetrammine bath. J. Appl. Electrochem., 22, 415–420
Li, C., Song, Z., Chen, C., Xiao, C., Subedi, B., Harvey, S.P., Kamala, N.S., Subedi, K., Chen, L., Liu, D., Li, Y., Kim, Y., Jiang, C., Heben, M.J., Zhao, D., Ellingson, R.J., Podraza, N.J., Al-Jassim, M. & Yan, Y. (2020). Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nature Energy, 5(10), 768–776. doi:10.1038/s41560-020-00692-7
Li, W., Deng, L., Wang, X., Cao, J., Xie, Y., Zhang, Q., Zhang, H., Deng, H. & Cheng, S. (2021). Close-spaced thermally evaporated 3D Sb2Se3 film for high-rate and high-capacity lithium-ion storage. Nanoscale. 13, 9834-9842 doi:10.1039/d1nr01585k
Li, W., Sengupta, N., Dechent, P., Howey, D., Annaswamy, A. & Sauer, D.U. (2021). Online capacity estimation of lithium-ion batteries with deep long short-term memory networks. Journal of Power Sources, 482, 228863. doi:10.1016/j.jpowsour.2020.22886
Lincot, D., Guillemoles, J.F., Taunier, S., Guimard, D., Sicx-Kurdi, J., Chaumon, A., Roussel, O., Ramdani, O., Hubert, C., Fauvarque, J.P., Bodereau, N., Parissi, L., Panheleux, P., Fanouillere, P., Naghavi, N., Grand, P.P., Benfarah, M., Mogensen, P. & Kerrec, O. (2004) Chalcopyrite thin film solar cells by electrodeposition. Solar Energy, 77(6), 725–737. doi:10.1016/j.solener.2004.05.024
Lincot, D. (2005). Electrodeposition of semiconductors. Thin Solid Films, 487(1-2), 40–48. doi:10.1016/j.tsf.2005.01.032
Lokhande, C.D. (1991). Chemical deposition of metal chalcogenide thin films. Materials Chemistry and Physics, 27(1), 1–43. doi:10.1016/0254-0584(91)90158-q
Maldonado-Páez, F.E., Masaquiza-Yanzapanta, A.G., Gadvay-Ushiña, D.J. & Jima-Matailo, J.C. (2020). Model of components of an electric vehicle that contribute to an analysis of clean technology in the automotive industry. Pol. Con., 5(8) 689-705 doi: 10.23857/pc.v5i8.1618
Manfredy, L., Márquez, O.P., Márquez, J., López-Rivera, S.A., Martínez, Y. & Balladores, Y. (2014). Electrosynthesis and Characterization of a CulnS2 Good Absorber Semiconductor for Thin Film Solar Cells. ARPN Journal of Science and Technology, 4(8):455-463
Mantell, C.L. (2021) Ingeniería Electroquímica, Ed Reverteé, España
Márquez, J., Márquez, O.P., Weinhold, E. & Márquez, K. (2021). Hidrógeno desde la energía Solar (con Electroquímica). Una revisión. 4(1)11-27.
Márquez, J. & Márquez, O.P. (2018). Electroquimienergía. Revista de Ingeniería y Tecnología Educativa (RITE), 1(2)9-26.
Márquez, J., Márquez, O.P., Weinhold, E., Márquez, K. & Balladores, Y. (2021). Vanadio en Celdas Redox con Flujo. Estado Actual: Una Revisión (parte B). Revista Ciencia e Ingeniería, 42(3):351-358.
Márquez, K., Montilla, M., Alarcón, D., Márquez, O.P., Márquez, J. & Manfredy, L. (2018). La Celda y la Batería Redox de Vanadio. Revista de Ingeniería y Tecnología Educativa (RITE), 1(1):25-40.
Márquez, O.P. & Márquez, J. (2018). Solid Catalysts for Renewable Energy production. Chapter 11 in Synthesis of electrocatalysts for electrochemistry in energy. IGI-global, (S González & F Imbert, Eds.), PA, USA
Moreno, S., Silva, M., Tanides, C., López, A.E. & Halperin, F. (2017). Uso Racional y Eficiente de la Energía. www.minem.gob.ar/ee., Vázquez Mazzini Ed.
O´M Bockris, J. & Reddy, A.K.N. (2002). Electrodics. In: Modern Electrochemistry 2A. pp 1035-1400 Springer, Boston, MA. Online ISBN978-0-306-47605-1
Olabi, A.G., Onumaegbu, C., Wilberforce, T., Ramadan, M., Abdelkareem, M.A. & Al – Alami, A.H. (2020). Critical Review of Energy Storage Systems. Energy, 214 (1) 2021, 118987. doi:10.1016/j.energy.2020.118987
Olabi, A.G., Wilberforce, T. & Abdelkareem, M.A. (2020). Fuel cell application in the automotive industry and future perspective. Energy, 214 (1) 118955. doi:10.1016/j.energy.2020.118955
Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.M. (2000). Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407(6803), 496–99. doi:10.1038/35035045
Ponce de León, C., Frías-Ferrer, A., González-García, J., Szánto, D.A. & Walsh, F.C. (2006). Redox flow cells for energy conversion. Journal of Power Sources, 160(1), 716–732. doi:10.1016/j.jpowsour.2006.02.09
Pugach, M., Vyshinsky, V. & Bischi, A. (2019). Energy efficiency analysis for a kilo-watt class vanadium redox flow battery system. Applied Energy, 253, 113533. doi:10.1016/j.apenergy.2019.11353
Reyes-Campaña, G.G., Guanuche-Larco, D.J., Pulles-Tinoco, S.A. & Aguirre-Stoica, M.S. (2021). Study of the perception of electric vehicles in the city of Quito. Dom. Cien., 7(5), 937-958 doi: http://dx.doi.org/10.23857/dc.v7i5.2291
Rusu, M., Wiesner, S., Fuertes-Marrón, D., Meeder, A., Doka, S., Bohne, W., Lindner, S., Schedel-Niedrig, Th., Giesen, Ch., Heuken, M. & Lux-Steiner, M.Ch. (2004). CuGaSe2 thin films prepared by a novel CCSVT technique for photovoltaic application. Thin Solid Films, 451-452, 556–561. doi:10.1016/j.tsf.2003.10.089
Sandoval-Ruiz, C.E. (2020). Arreglos fotovoltaicos inteligentes con modelo LFSR-reconfigurable. Ingeniería, 30(2) 32-61.
Trujillo-Sandoval, DJ. & García-Torres, E.M. (2020). Respuesta de demanda de energía por introducción de vehículos eléctricos: estado del arte, I+D Tecnológico, 16(1) 5-11. https://doi.org/10.33412/idt.v16.1.2433
Tuller, H.L. (2017). Solar to fuels conversion technologies: a perspective. Materials for Renewable and Sustainable Energy, 6(1)1-16. doi:10.1007/s40243-017-0088-2
Ventosa, E. (2021). Why Nano-electrochemistry is Necessary in Battery Research. Current Opinion in Electrochemistry, 25, 100635- doi:10.1016/j.coelec.2020.09.002
Villarreal-Archila, S.M., Serrano-Figueroa, C. & Quiroga-Rojas, D.K. (2021) Evaluation of a mitigation proposal on the final disposal of lead-based batteries and its environmental impact. Ingeniería y competitividad, 23(1), 8720-8732 doi: 10.25100/iyc.23i1.8720
Wang, Y., Ruiz Diaz, D.F., Chen, K.S., Wang, Z. & Adroher, X.C. (2020). Materials, technological status, and fundamentals of PEM fuel cells – A review. Materials Today, 32, 178-203 doi:10.1016/j.mattod.2019.06.005
Willkomm, J., Orchard, K.L., Reynal, A., Pastor, E., Durrant, J.R. & Reisner, E. (2016). Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production. Chem. Soc. Rev., 45 (1) 9-23. doi:10.1039/C5CS00733J
Wulfinghoff, D.R. (1999). Fossil Fuels. Energy Efficiency Manual. 1247-1287
Yanagida, M., Onozawa, N., Mitsuhiko, K., Kazuhiro, K. & Sugihara, S.H. (2010). Optimization of tandem structured dye-sensitized solar cell. K. 94(2) 297-302. doi:10.1016/j.solmat.2009.10.002