Electrodos modificados con nanopartículas de oro y su aplicación en biosensores electriquímicos que utilizan peroxidasa de rábano como sistema de bioreconocimiento biológico: detección de peróxido de hidrógeno

Contenido principal del artículo

Lenys Fernández
https://orcid.org/0000-0001-6720-6343
Patricio Espinoza-Montero
https://orcid.org/0000-0003-0592-8652
Augusto Rodríguez

Resumen

Las reacciones de transferencia de electrones de biomoléculas son un foco importante de extensas investigaciones en Químicas, Físicas y Bioquímicas. La electroquímica proporciona herramientas poderosas para estudiar procesos de transferencia de electrones en sistemas bioquímicos, siendo las enzimas moléculas de particular interés. Entre los nanomateriales para la inmovilización de enzimas sobre superficies electródicas, las nanopartículas de oro son una buena alternativa por sus propiedades: biocompatibilidad, alta propiedades electroactivas, fuerte capacidad de adsorción, relación superficie-volumen y alta actividad catalítica. El peróxido de hidrógeno (H2O2), sustrato de la enzima peroxidasa de rábano o "Horseradish Peroxidase", desempeña papeles críticos en sistemas industriales, biológicos, farmacéuticos y muchos otros campos. El nivel de concentración de H2O2 es un parámetro biológico significativo en el estudio de la enfermedad como el Alzheimer, infarto de miocardio, enfermedad de Parkinson, Cáncer, etc. Por lo anterior, es de gran importancia desarrollar métodos eficientes para la detección sensible y selectiva de H2O2 bajo condiciones fisiológicas. En el presente manuscrito, se revisa el uso de nanopartículas de oro en electrodos modificados para la inmovilización de enzimas (biosensores) para determinación de H2O2. Los resultados más relevantes indican que las nanopartículas de oro favorecen la transferencia directa de electrones entre la proteína redox y el electrodo. Las nanopartículas de oro, proporcionan un entorno natural para la inmovilización biomolecular que permite su mayor estabilidad y tiempo de vida sobre el electrodo.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Sección
Número especial

Citas

Abi, A., Ferapontova, E. E. (2012). Unmediated by DNA electron transfer in redox-labeled DNA duplexes end-tethered to gold electrodes. Journal of the American Chemical Society, 134(35), 14499–14507.

Agarwal, P. (2006). Enzimes: An integrated view of structure, dynamics and function. Microbial Cell Factories, 5(2), 1-12.

Ahirwal, G. K., Mitra, C. K. (2009). Direct electrochemistry of horseradish peroxidase-gold nanoparticles conjugate. Sensors, 9(2), 881-894.

Ahirwar, R., Sharma, J. G., Singh, B., Kumar, K., Nahar, P., Kumar, S. (2017). A Simple and Efficient Method for Removal of Phenolic Contaminants in Wastewater Using Covalent Immobilized Horseradish Peroxidase. Journal of Materials Science and Engineering B, 7(1-2), 27-38.

Al-Hardan, N., Abdul Hamid, M., Shamsudin, R., Othman, N. (2016). Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Nanorods. Sensors (Basel), 16(7), 1004.

Amorim, A., Gasques, M., Andreaus, J., Scharf, M. (2002). The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics. Anais da Academia Brasileira de Ciências, 74(3), 433-436.

Andreu, R., Ferapontova, E. E., Gorton, L., Calvente, J. J. (2007). Direct Electron Transfer Kinetics in Horseradish Peroxidase Electrocatalysis. The Journal of Physical Chemistry B, 111(2), 69–477.

Bauzá, L., Aguilera, A., Echenique, R., Andrinolo, D., Giannuzzi, L. (2014). Application of Hydrogen Peroxide to the Control of Eutrophic Lake Systems in Laboratory Assays. Toxins (Basel), 6(9), 2657-2675.

Bolat, G., Kuralay, F., Eroglu, G., Abaci, S. (2013). Fabrication of a polyaniline ultramicroelectrode via a self-assembled monolayer modified gold electrode. Sensors, 13(7), 8079–8094.

Boujakhrout, A., Diez, P., Sanchez, A., Martinez-Ruiz, P., Pingarron, J. M., Villalonga, R. (2016). Gold nanoparticles-decorated silver-bipyridine nanobelts for the construction of mediatorless hydrogen peroxide. Journal of Colloid and Interface Science, 482, 105-111.

Cai, H., Xu, Y., Zhu, N. N., He, P. G., Fang, Y. Z. (2002). An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst, 127(6), 803-808.

Calvente, J. J., Narváez, A., Domínguez, E., Andreu, R. (2003). Kinetic Analysis of Wired Enzyme Electrodes. Application to Horseradish Peroxidase Entrapped in a Redox Polymer Matrix. Journal of Physical Chemistry B, 107, 6629–6643.

Castillo, J., Ferapontova, E., Hushpulian, D., Tasca, F., Tishkov, V., Chubar, T., Gorton, L. (2006). Direct electrochemistry and bioelectrocatalysis of H2O2 reduction of recombinant tobacco peroxidase on graphite. Effect of peroxidase single-point mutation on Ca2+-modulated catalytic activity. Journal of Electroanalytical Chemistry, 588(1), 112-121.

Chen, S., Yuan, R., Chai, Y., Hu, F. (2012). Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchimica Acta, 180(1-2), 15-32.

Chen, W., Cai, S., Ren, Q. Q., Wen, W., Zhao, Y. D. (2012). Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst, 137, 49–58.

Cheng, J., Ming, S., Zuo, P. (2006). Horseradish Peroxidase immobilized on aluminium-pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Research, 40, 283-290.

Ciriminna, R., Albanese, L., Meneguzzo, F., Pagliaro, M. (2016). Hydrogen Peroxide: A Key Chemical for Today's Sustainable Development. Chemistry-Sustainability-Energy-Materials, 9(24), 3374-3381.

Colangelo, E., Comenge, J., Paramelle, D., Volk, M., Chen, Q., Lévy, R. (2017). Characterizing Self-Assembled Monolayers on Gold Nanoparticles. Bioconjugate Chemistry, 28(1), 11-22.

Crulhas, B., Ramos, N., Castro, G., Pedrosa, V., (2016). Detection of hydrogen peroxide releasing from prostate cancer cell using a biosensor. Journal of Solid State Electrochemistry, 20, 24 –24.

Csöregi, E., Jönsson-Pettersson, G., Gorton, L. (1993). Mediatorless electrocatalytic reduction of hydrogen peroxide at graphite electrodes chemically modified with peroxidases. Journal of Biotechnology, 30(3), 315-337.

Dunford, H., Adeniran, A. (1986). Hammet rho sigma correlation for reactions of horseradish peroxidase Compound II with phenols. Archives of Biochemistry and Biophysics, 251(2), 536-542.

Fahad S, Al., Sajjad, H., Waheed, A., Yousef, A., Muhammad, I., Adnan, H., Zahoor, U. (2012). Engineered nanostructures: A review of their synthesis, characterization and toxic hazard considerations. Arabian Journal of Chemistry, 10(S 1), S376-S388.

Farzana, S., Ganesh, V., Berchmans, S. (2013). A sensing platform for direct electron transfer study of horseradish peroxidase. Journal of The Electrochemical Society, 160, H573-H580.

Fernández, L., Rodríguez, A., González, G., Úribe, R., Díaz, A., Espinoza-Montero, P. (2019). Electrical Communication between “Horseradish Peroxidase” and Modified Electrodes with Nanomaterials: Application as Enzymatic Electrochemical Biosensors. En Uzun, M. HORSERADISH PEROXIDASE STRUCTURE, FUNCTIONS AND APPLICATIONS (pp. 29-111). Nueva York: Nova Science Publishers.

Fiorito, P. A., Goncales, V. R., Ponzio, E. A., Córdoba de Torresi, S. I. (2005). Synthesis, characterization and immobilization of Prussian blue nanoparticles. A potential tool for biosensing devices. Chemical Communications, 3, 366-368.

Garguilo, M. G., Huynh, N., Proctor, A., Michael, A. C. (1993). Amperometric Sensors for Peroxide, Choline, and Acetylcholine Based on Electron Transfer between Horseradish Peroxidase and a Redox Polymer. Analytical Chemistry, 65(5), 523–528.

Gaspar, S., Popescu, I. C., Gazaryan, I. G., Bautista, A. G., Sakharov, I. Y., Mattiasson, B., Csöregi, E. (2000). Biosensors based on novel plant peroxidases: a comparative study. Electrochimica acta, 46(2-3), 255-264.

Gaspar, S., Zimmermann, H., Gazaryan, I., Csöregi, E., Schuhmann, W. (2001). Hydrogen Peroxide Biosensors Based on Direct Electron Transfer from Plant Peroxidases Immobilized on Self‐Assembled Thiol‐Monolayer Modified Gold Electrodes. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 13(4), 284-288.

Gorton, Á. (1995). Carbon paste electrodes modified with enzymes, tissues, and cells. Electroanalysis, 7(1), 23-45.

Gunnar, I., Berglund, H., Carlsson, A., Smith, H., Szöke, A. (2002). The catalytic pathway of horseradish peroxidase at high resolution. Letters to Nature, 417(6887), 463-468.

Herizchi, R., Abbasi, E., Milani, M., Akbarzadeh, A. (2014). Current methods for synthesis of gold nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology An International Journal, 44(2) 596-602.

Huerta-Miranda, G. A., Arrocha-Arcos, A. A., Miranda-Hernández, M. (2018). Gold nanoparticles/4-aminothiophenol interfaces for direct electron transfer of horseradish peroxidase: enzymatic orientation and modulation of sensitivity towards hydrogen peroxide detection. Bioelectrochemistry, 122, 77-83.

Jitendra N, T., Rajanish N, T., Kwang S, K. (2012). Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 57(4), 724-803.

Kohen, A. (2015). Role of dynamics in enzyme catalysis: Substantial versus semantic controversies. Accounts of Chemical Research, 48, 466–473.

Koposova, E., Liu, X., Kisner, A., Ermolenko, Y., Shumilova, G., Offenhausser, A., Mourzina, Y. (2014). Bioelectrochemical systems with oleylamine-stabilized gold nanostructures and horseradish peroxidase for hydrogen peroxide sensor. Biosensors and Bioelectronics, 57, 54-58.

Koposova, E., Shumilova, G., Ermolenko, Y., Kisner, A., Offenhäusser, A., Mourzina, Y. (2015). Direct electrochemistry of cyt c and hydrogen peroxide biosensing on oleylamine- and citrate-stabilized gold nanostructures. Sensors and Actuators B: Chemical, 207(B), 1045-1052.

Kutsenko, V. Y., Lopatina, Y. Y., Bossard-Giannesini, L., Marchenko, O. A., Pluchery, O., Snegir, S. V. (2017). Alkylthiol self-assembled monolayers on Au (111) with tailored tail groups for attaching gold nanoparticles. Nanotechnology, 28(23), 235603.

Ledezma, I. (2011). Inmovilización de peroxidasa en hidrotalcita modificada con surfactantes y su evaluación sobre electrodos de carbón vítreo. (Tesis de pregrado). Universidad Simón Bolívar, Miranda, Venezuela.

Liu, X., Feng, H., Zhao, R., Wang, Y., Liu, X. (2012). A novel approach to construct a horseradish peroxidase|hydrophilic ionic liquids|Au nanoparticles dotted titanate nanotubes biosensor for amperometric sensing of hydrogen peroxide. Biosensors and Bioelectronics, 31(1), 101-104.

Lopes, G., Pinto, D., Silva, A. (2014). Horseradish peroxidase (HRP) as a tool in green chemistry. Royal Society of Chemistry Advances, 4(70), 37244-37265.

Ma, Y., Di, J., Yan, X., Zhao, M., Lu, Z., Tu, Y. (2009). Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application. Biosensors and Bioelectronics, 24(5), 1480– 1483.

Mehrotra, P. (2016). Biosensors and their applications – A review. Journal of Oral Biology and Craniofacial Research, 6(2), 153-159.

Ospina, E., Armada, M. P. G., Losada, J., Alonso, B., Casado, C. M. (2016). Polyferrocenyl Polycyclosiloxane/Gold Nanoparticles: An Efficient Electrocatalytic Platform for Immobilization and Direct Electrochemistry of HRP. Journal of The Electrochemical Society, 163(9), H826.

Qu, F., Ma, X., Hui, Y., Chen, F., Gao, Y., Chen, Y. (2017). Surfactant-assisted preparation of nano hybrid for simultaneously improving enzyme-immobilization and electron-transfer in biosensor and biofuel cell. Journal of Solid State Electrochemistry, 21(6), 1545-1577.

Ramanathan, K., Rank, M., Svitel, J., Dzgoev, A., Danielsson, B. (1999). The Development and applications of Thermal Biosensors for Bioprocess Monitoring. Trends in Biotechnology, 17(12), 499-505.

Rosca, V., Popescu, I. (2002). Kinetic analysis of horseradish peroxidase “wiring” in redox polyelectrolyte-peroxidase multilayer assemblies. Electrochemistry Communications, 4(11), 904–911.

Ruíz, J. (2006). Desarrollo de biosensores enzimáticos miniaturizados para su aplicación en la industria alimentaria. (Tesis Doctoral). Centro Nacional de Microelectrónica, Barcelona, España.

Ruzgas, T., Csöregi, E., Emnéus, J., Gorton, L., Marko, G. (1996). Peroxidase-modified electrodes: Fundamentals and application. Analytica Chimica Acta, 330(2-3), 123-138.

Ruzgas, T., Gorton, L., Emnéus, J., Marko, G. (1995). Kinetic models of horseradish peroxidase action on a graphite electrode. Journal of Electroanalytical Chemistry, 391(1-2), 41–49.

Scouten, W., Luong, J., Brown, S. (1995). Enzyme or protein immobilization techniques for applications in biosensor design. Trends in Biotechnology, 13(5), 178-185.

Siddiqui, M. R., AlOthman, Z. A., Rahman, N. (2017). Analytical techniques in pharmaceutical analysis: A review. Arabian Journal of Chemistry, 10(S1), S1409-S1421.

Smit, M. H., Cass, A. E. G. (1990). Cyanide Detection Using a Substrate-Regenerating, Peroxidase-Based Biosensor. Analytical Chemistry, 62(22), 2429–2436.

Tabner, B., El-Agnaf, O. M. A., Turnbull, S., German, M., Paleologou, K., Hayashi, Y., Cooper, L., Fullwood, N., Allsop, D. (2005). Hydrogen Peroxide Is Generated during the Very Early Stages of Aggregation of the Amyloid Peptides Implicated in Alzheimer Disease and Familial British Dementia. The Journal of Biological Chemistry, 280, 35789-35792.

Tatsuma, T., Watanabe, T., Okawa, Y. (1989). Enzyme Monolayer- and Bilayer-Modified Tin Oxide Electrodes for the Determination of Hydrogen Peroxide and Glucose. Analytical Chemistry, 61(21), 2352-2355.

Thevenot, D., Toth, K., Durst, R., Wilson, G. (2001). Electrochemical biosensors: recommended definitions and classification. Biosensors & Bioelectronics, 16(1-2), 121-131.

Veitch, N. (2004). Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 65, 249-259.

Wan, Q., Song, H., Shu, H., Wang, Z., Zou, J., Yang, N. (2013). In situ synthesized gold nanoparticles for direct electrochemistry of horseradish peroxidase. Colloids and Surfaces B: Biointerfaces, 104, 181-185.

Wang, F., Yuan, R., Chai, Y. (2007). A new amperometric biosensor for hydrogen peroxide determination based on HRP-nanogold-PTH-nanogold-modified carbon paste electrodes. European Food Research and Technology, 225, 95-104.

Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J. F., Willner, I. (2003). "Plugging into Enzymes": Nanowiring of Redox Enzymes by a Gold Nanoparticle. Science, 299(5614), 1877-1881.

Xu, J. J., Zhao, W., Luo, X. L., Chen, H. Y. (2005). A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors. Chemical Communications, 6(6), 792-794.

Yang, S., Ding, S., Li, L., Ding, S., Cao, Q., Yang, J., Chen, A. (2017). One-Step Preparation of Direct Electrochemistry HRP Biosensor via Electrodeposition. Journal of The Electrochemical Society, 164(13), B710.

Yu, C., Wang, L., Zhu, C., Bao, N., Gu, H. (2015). Detection of cellular H2O2 in living cells based on horseradish peroxidase at the interface of Au nanoparticles decorated graphene oxide. Sensors and Actuators B: Chemical, 211(1), 17-24.

Zhuo, Y., Yuan, R., Chai, Y. Q., Tang, D. P., Zhang, Y., Wang, N., Li, X. L., Zhu, Q. (2005). A reagentless amperometric immunosensor based on gold nanoparticles/thionine/Nafion-membrane-modified gold electrode for determination of α-1-fetoprotein. Electrochemistry Communications, 7(4), 355-360.

Artículos más leídos del mismo autor/a