Humedales artificiales y celdas de combustibles microbianas como sistemas individuales y combinados para el tratamiento de aguas residuales: una revisión

Contenido principal del artículo

Karla Montenegro-Rosero
Lenys Fernández
Cristina Villamar-Ayala
Patricio Espinoza-Montero

Resumen

El aumento poblacional y el desarrollo tecnológico ha ocasionado una gran demanda energética, lo que ha dado paso a que varios grupos de investigación incursionen en la búsqueda de soluciones a corto y mediano plazo. El uso de tecnologías que permitan tratar aguas contaminadas y la generación simultánea de energía eléctrica surge como una alternativa viable para dar solución a este problema. En este documento se revisa el mecanismo para el tratamiento de agua residual y la generación de energía eléctrica simultánea, a través de sistemas combinados de humedales acoplados a celdas de combustible microbianas (CW-MFC, por sus siglas en inglés). El objetivo de esta revisión es describir los componentes y funcionamiento de los sistemas individuales CW y MFC, así como también del sistema combinado CW-MFC, los cuales han sido empleados en investigaciones recientes. Se exploran los principales estudios, relacionados con el material con el cual se construyen los electrodos, que generen mayor eficiencia energética y materiales filtrantes que beneficien el tratamiento del agua residual. Además, se presentan los desafíos en este ámbito de investigación. Los CW y las MFC son sistemas que combinados mejoran la eficiencia en el tratamiento de agua residual y a la vez permiten aprovechar la energía eléctrica que los microorganismos generan durante el proceso de oxidación de la materia orgánica.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Sección
Artículos de revisión

Citas

Ahn, Y., Jo, S. Y., Song, Y. C., Lee, W., & Chung, J. W. (2017). Application of Reticulated Vitreous Carbons doped with low-cost catalysts as the cathodes in microbial fuel cells. KSCE Journal of Civil Engineering, 21(3), 623–628. https://doi.org/10.1007/s12205-016-1792-7

Ángeles, M. D. L., Patagónico, C. U., Rivadavia, C., & Lladser, P. G. (2005). Crisis Energética Mundial. Colegio Universitario Patagónico, 1–5.

Camacho, J. V., Montano, C., Andrés, M., Rodrigo, R., Jesús, F., Morales, F., & Cañizares, P. C. (2014). ENERGY PRODUCTION FROM WASTEWATER USING HORIZONTAL AND VERTICAL SUBSURFACE FLOW CONSTRUCTED WETLANDS, 13(10), 2523.

Can, O., & Yakar, A. (2017). A hybrid constructed wetland combined with microbial fuel cell for boron ( B ) removal and bioelectric production. Ecological Engineering, 102, 411–421. https://doi.org/10.1016/j.ecoleng.2017.02.034

Corbella, C., Garfí, M., & Puigagut, J. (2016). Science of the Total Environment Long-term assessment of best cathode position to maximise microbial fuel cell performance in horizontal subsurface fl ow constructed wetlands, 564, 448–455. https://doi.org/10.1016/j.scitotenv.2016.03.170

Edwards, C. D. (2000). A handbook of constructed wetlands. Wetlands, 1, 53. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.7471&rep=rep1&type=pdf

EPA. (1993). Subsurface flow constructed wetlands for wastewater treatment. A technology assessment. United States Environmental Protection Agency, (July), 382. https://doi.org/10.1016/0925-8574(93)90009-5

Fallis, A. . (2013). Manual De Tecnologías No Convencionales Para La Depuración De Aguas Residuales. Journal of Chemical Information and Modeling (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004

Fang, Z., Song, H., Cang, N., & Li, X. (2013). Bioresource Technology Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresource Technology, 144, 165–171. https://doi.org/10.1016/j.biortech.2013.06.073

Fasahat, S. (2017). Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment, (March).

Fioreze, M., & Mancuso, M. A. (2019). MODFLOW and MODPATH for hydrodynamic simulation of porous media in horizontal subsurface flow constructed wetlands: A tool for design criteria. Ecological Engineering, 130(January), 45–52. https://doi.org/10.1016/j.ecoleng.2019.01.012

Gaurav, K., Singh, R., Tiwari, B. K., & Srivastava, R. (2019). Novel proton exchange membranes based on PVC for microbial fuel cells (MFCs). Journal of Polymer Engineering, 0(0), 360–367. https://doi.org/10.1515/polyeng-2018-0276

Hartl, M., Bedoya-ríos, D. F., Fernández-gatell, M., Rousseau, D. P. L., Du, G., Garfí, M., & Puigagut, J. (2019). Science of the Total Environment Contaminants removal and bacterial activity enhancement along the fl ow path of constructed wetland microbial fuel cells. Science of the Total Environment, 652, 1195–1208. https://doi.org/10.1016/j.scitotenv.2018.10.234

Kadam, S. K., Chandanshive, V. V., Rane, N. R., Patil, S. M., Gholave, A. R., Khandare, R. V., … Govindwar, S. P. (2018). Phytobeds with Fimbristylis dichotoma and Ammannia baccifera for treatment of real textile effluent: An in situ treatment, anatomical studies and toxicity evaluation. Environmental Research, 160(September 2017), 1–11. https://doi.org/10.1016/j.envres.2017.09.009

Li, H., Zhang, S., Yang, X., Yang, Y., Xu, H., & Li, X. (2019). Chemosphere Enhanced degradation of bisphenol A and ibuprofen by an up- fl ow microbial fuel cell-coupled constructed wetland and analysis of bacterial community structure. Chemosphere, 217, 599–608. https://doi.org/10.1016/j.chemosphere.2018.11.022

Liu, H., Ramnarayanan, R., & Logan, B. E. (2004). Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environmental Science and Technology, 38(7), 2281–2285. https://doi.org/10.1021/es034923g

Liu, Y., Song, P., Gai, R., Yan, C., Jiao, Y., Yin, D., … Zhang, L. (2019). Recovering platinum from wastewater by charring biofilm of microbial fuel cells (MFCs). Journal of Saudi Chemical Society, 23(3), 338–345. https://doi.org/10.1016/j.jscs.2018.08.003

Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., … Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192. https://doi.org/10.1021/es0605016

Malvankar, N. S., & Lovley, D. R. (2014). Microbial nanowires for bioenergy applications. Current Opinion in Biotechnology, 27, 88–95. https://doi.org/10.1016/j.copbio.2013.12.003

Oon, Y. L., Ong, S. A., Ho, L. N., Wong, Y. S., Dahalan, F. A., Oon, Y. S., … Nordin, N. (2017). Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresource Technology, 224, 265–275. https://doi.org/10.1016/j.biortech.2016.10.079

Oon, Y., Ong, S., Ho, L., Wong, Y., Dahalan, F. A., Oon, Y., … Nordin, N. (2018). Title : Authors : Address : Water Research Group ( WAREG ), School of Environmental Engineering , Universiti Soon-An Ong. Bioresource Technology. https://doi.org/10.1016/j.biortech.2018.06.035

Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology, 23(6), 291–298. https://doi.org/10.1016/j.tibtech.2005.04.008

Revelo, D. M., & Hurtado, N. H. (2013). Celdas de Combustible Microbianas ( CCMs ): Un Reto para la Remoción de Materia Orgánica y la Generación de Energía Eléctrica Microbial Fuel Cells ( MFCs ): A Challenge for the Removal of Organic Matter and Electricity Generation, 24(6), 17–28. https://doi.org/10.4067/S0718-07642013000600004

Romero, A., Vásquez, J., & González, A. (2012). Bacterias, fuente de energía para el futuro. Tecnura, (32), 118–143. https://doi.org/http://dx.doi.org/10.14483/udistrital.jour.tecnura.2012.2.a10

Saba, B., Khan, M., Christy, A. D., & Veno, B. (2018). PT US. Bioelectrochemistry, #pagerange#. https://doi.org/10.1016/j.bioelechem.2018.12.005

Shen, X., Zhang, J., Liu, D., Hu, Z., & Liu, H. (2018). Enhance performance of microbial fuel cell coupled surface fl ow constructed wetland by using submerged plants and enclosed anodes. Chemical Engineering Journal, 351(June), 312–318. https://doi.org/10.1016/j.cej.2018.06.117

Shi, Y., Yang, X., Ning, X., & Yang, Q. (2018). Research progress of microbial fuel cell and constructed wetland coupling system Research progress of microbial fuel cell and constructed wetland coupling system. https://doi.org/10.1088/1755-1315/199/5/052014

Song, H., Li, H., Zhang, S., Yang, Y., Zhang, L., & Xu, H. (2018). Fate of sulfadiazine and its corresponding resistance genes in up- fl ow microbial fuel cell coupled constructed wetlands : E ff ects of circuit operation mode and hydraulic retention time. Chemical Engineering Journal, 350(June), 920–929. https://doi.org/10.1016/j.cej.2018.06.035

Srivastava, P., Yadav, A. K., & Mishra, B. K. (2015). Contributed Equally , * Corresponding Author : Dr . Asheesh K Yadav , Tel . + 91-674-. BIORESOURCE TECHNOLOGY. https://doi.org/10.1016/j.biortech.2015.05.072

USEPA. (1988). Design Manual: Constructed Wetlands and Aquatic Plant Systems for Municipal Wastewater Treatment, (September), 92. https://doi.org/EPA/625/1-88/022

Wang, J., Song, X., Wang, Y., Bai, J., Bai, H., Yan, D., … Dong, G. (2017). Bioresource Technology Bioelectricity generation , contaminant removal and bacterial community distribution as a ff ected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell. Bioresource Technology, 245(September), 372–378. https://doi.org/10.1016/j.biortech.2017.08.191

Wang, X., Tian, Y., Liu, H., Zhao, X., & Peng, S. (2019a). Science of the Total Environment Optimizing the performance of organics and nutrient removal in constructed wetland – microbial fuel cell systems. Science of the Total Environment, 653, 860–871. https://doi.org/10.1016/j.scitotenv.2018.11.005

Wang, X., Tian, Y., Liu, H., Zhao, X., & Peng, S. (2019b). Science of the Total Environment The in fl uence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands. Science of the Total Environment, 656, 270–279. https://doi.org/10.1016/j.scitotenv.2018.11.328

Wu, S., Kuschk, P., Brix, H., Vymazal, J., & Dong, R. (2014). ScienceDirect Development of constructed wetlands in performance intensifications for wastewater treatment : A nitrogen and organic matter targeted review. Water Research, 57, 40–55. https://doi.org/10.1016/j.watres.2014.03.020

Wu, S., Lv, T., Lu, Q., Ajmal, Z., & Dong, R. (2017). Treatment of anaerobic digestate supernatant in microbial fuel cell coupled constructed wetlands: Evaluation of nitrogen removal, electricity generation, and bacterial community response. Science of the Total Environment, 580, 339–346. https://doi.org/10.1016/j.scitotenv.2016.11.138

Xie, T., Jing, Z., Hu, J., Yuan, P., Liu, Y., & Cao, S. (2018). Degradation of nitrobenzene-containing wastewater by a microbial-fuel-cell- coupled constructed wetland. Ecological Engineering, 112(August 2017), 65–71. https://doi.org/10.1016/j.ecoleng.2017.12.018

Xu, F., Cao, F., Kong, Q., Zhou, L., Yuan, Q., Zhu, Y., … Wang, Z. (2018). Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chemical Engineering Journal, 339(January), 479–486. https://doi.org/10.1016/j.cej.2018.02.003

Xu, L., Zhao, Y., Tang, C., & Doherty, L. (2018). In fl uence of glass wool as separator on bioelectricity generation in a constructed wetland-microbial fuel cell. Journal of Environmental Management, 207, 116–123. https://doi.org/10.1016/j.jenvman.2017.11.035

Xu, L., Zhao, Y., Wang, X., & Yu, W. (2018). Applying multiple bio-cathodes in constructed wetland-microbial fuel cell for promoting energy production and bioelectrical derived nitri fi cation- denitri fi cation process. Chemical Engineering Journal, 344(March), 105–113. https://doi.org/10.1016/j.cej.2018.03.065

Yang, Q. (2016). Treatment of Oil Wastewater and Electricity Generation by Integrating Constructed Wetland with. https://doi.org/10.3390/ma9110885

Yin, T., Zhang, H., Yang, G., & Wang, L. (2019). Polyaniline composite TiO2 nanosheets modified carbon paper electrode as a high performance bioanode for microbial fuel cells. Synthetic Metals, 252(November 2018), 8–14. https://doi.org/10.1016/j.synthmet.2019.03.027

Zhang, S., Yang, X., Li, H., Song, H., Wang, R., & Dai, Z. (2017). Bioresource Technology Degradation of sulfamethoxazole in bioelectrochemical system with power supplied by constructed wetland-coupled microbial fuel cells. Bioresource Technology, 244(May), 345–352. https://doi.org/10.1016/j.biortech.2017.07.143

Zhang, Y., Liu, M., Zhou, M., Yang, H., Liang, L., & Gu, T. (2019). Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production : Synergistic e ff ects , mechanisms and challenges. Renewable and Sustainable Energy Reviews, 103(November 2018), 13–29. https://doi.org/10.1016/j.rser.2018.12.027

Artículos más leídos del mismo autor/a