Constructed wetlands and microbial fuel cells as individual and combined systems for wastewater treatment: a review
Main Article Content
Abstract
The population increases and the technological development has caused a great energy demand, which has given way to several research groups venturing into the search for solutions in the short and medium term. The use of technologies to treat contaminated water and the generation of electrical energy simultaneously emerge as viable alternatives to solve the problem. This work reviews the mechanism for the treatment of wastewater and the generation of electrical energy simultaneously through combined systems of wetlands coupled to microbial fuel cells (CW-MFC). The objective of this review is to describe the components and operation of the individual CW and MFC systems, as well as the CW-MFC system, which have been used in recent research. The main studies were explored, studies related to the material that electrodes are built, which generate more energy efficiency and filtering materials that benefit the wastewater treatment. In addition, the challenges in this field of research are presented. The CW and the MFC are systems that, combined, improve the efficiency in the wastewater treatment and at the same time they allow to take advantage of the electrical energy that the microorganisms generate during the oxidation process of the organic matter.
Downloads
Article Details
- The authors agree to respect the academic information of other authors, and to assign the copyrights to the journal infoANALÍTICA, so that the article can be edited, published and distributed.
- The content of the scientific articles and the publications that appear in the journal is the exclusive responsibility of their authors. The distribution of the articles published in the infoANALÍTICA Journal is done under a Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
References
Ángeles, M. D. L., Patagónico, C. U., Rivadavia, C., & Lladser, P. G. (2005). Crisis Energética Mundial. Colegio Universitario Patagónico, 1–5.
Camacho, J. V., Montano, C., Andrés, M., Rodrigo, R., Jesús, F., Morales, F., & Cañizares, P. C. (2014). ENERGY PRODUCTION FROM WASTEWATER USING HORIZONTAL AND VERTICAL SUBSURFACE FLOW CONSTRUCTED WETLANDS, 13(10), 2523.
Can, O., & Yakar, A. (2017). A hybrid constructed wetland combined with microbial fuel cell for boron ( B ) removal and bioelectric production. Ecological Engineering, 102, 411–421. https://doi.org/10.1016/j.ecoleng.2017.02.034
Corbella, C., Garfí, M., & Puigagut, J. (2016). Science of the Total Environment Long-term assessment of best cathode position to maximise microbial fuel cell performance in horizontal subsurface fl ow constructed wetlands, 564, 448–455. https://doi.org/10.1016/j.scitotenv.2016.03.170
Edwards, C. D. (2000). A handbook of constructed wetlands. Wetlands, 1, 53. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.7471&rep=rep1&type=pdf
EPA. (1993). Subsurface flow constructed wetlands for wastewater treatment. A technology assessment. United States Environmental Protection Agency, (July), 382. https://doi.org/10.1016/0925-8574(93)90009-5
Fallis, A. . (2013). Manual De Tecnologías No Convencionales Para La Depuración De Aguas Residuales. Journal of Chemical Information and Modeling (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004
Fang, Z., Song, H., Cang, N., & Li, X. (2013). Bioresource Technology Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresource Technology, 144, 165–171. https://doi.org/10.1016/j.biortech.2013.06.073
Fasahat, S. (2017). Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment, (March).
Fioreze, M., & Mancuso, M. A. (2019). MODFLOW and MODPATH for hydrodynamic simulation of porous media in horizontal subsurface flow constructed wetlands: A tool for design criteria. Ecological Engineering, 130(January), 45–52. https://doi.org/10.1016/j.ecoleng.2019.01.012
Gaurav, K., Singh, R., Tiwari, B. K., & Srivastava, R. (2019). Novel proton exchange membranes based on PVC for microbial fuel cells (MFCs). Journal of Polymer Engineering, 0(0), 360–367. https://doi.org/10.1515/polyeng-2018-0276
Hartl, M., Bedoya-ríos, D. F., Fernández-gatell, M., Rousseau, D. P. L., Du, G., Garfí, M., & Puigagut, J. (2019). Science of the Total Environment Contaminants removal and bacterial activity enhancement along the fl ow path of constructed wetland microbial fuel cells. Science of the Total Environment, 652, 1195–1208. https://doi.org/10.1016/j.scitotenv.2018.10.234
Kadam, S. K., Chandanshive, V. V., Rane, N. R., Patil, S. M., Gholave, A. R., Khandare, R. V., … Govindwar, S. P. (2018). Phytobeds with Fimbristylis dichotoma and Ammannia baccifera for treatment of real textile effluent: An in situ treatment, anatomical studies and toxicity evaluation. Environmental Research, 160(September 2017), 1–11. https://doi.org/10.1016/j.envres.2017.09.009
Li, H., Zhang, S., Yang, X., Yang, Y., Xu, H., & Li, X. (2019). Chemosphere Enhanced degradation of bisphenol A and ibuprofen by an up- fl ow microbial fuel cell-coupled constructed wetland and analysis of bacterial community structure. Chemosphere, 217, 599–608. https://doi.org/10.1016/j.chemosphere.2018.11.022
Liu, H., Ramnarayanan, R., & Logan, B. E. (2004). Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environmental Science and Technology, 38(7), 2281–2285. https://doi.org/10.1021/es034923g
Liu, Y., Song, P., Gai, R., Yan, C., Jiao, Y., Yin, D., … Zhang, L. (2019). Recovering platinum from wastewater by charring biofilm of microbial fuel cells (MFCs). Journal of Saudi Chemical Society, 23(3), 338–345. https://doi.org/10.1016/j.jscs.2018.08.003
Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., … Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192. https://doi.org/10.1021/es0605016
Malvankar, N. S., & Lovley, D. R. (2014). Microbial nanowires for bioenergy applications. Current Opinion in Biotechnology, 27, 88–95. https://doi.org/10.1016/j.copbio.2013.12.003
Oon, Y. L., Ong, S. A., Ho, L. N., Wong, Y. S., Dahalan, F. A., Oon, Y. S., … Nordin, N. (2017). Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresource Technology, 224, 265–275. https://doi.org/10.1016/j.biortech.2016.10.079
Oon, Y., Ong, S., Ho, L., Wong, Y., Dahalan, F. A., Oon, Y., … Nordin, N. (2018). Title : Authors : Address : Water Research Group ( WAREG ), School of Environmental Engineering , Universiti Soon-An Ong. Bioresource Technology. https://doi.org/10.1016/j.biortech.2018.06.035
Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology, 23(6), 291–298. https://doi.org/10.1016/j.tibtech.2005.04.008
Revelo, D. M., & Hurtado, N. H. (2013). Celdas de Combustible Microbianas ( CCMs ): Un Reto para la Remoción de Materia Orgánica y la Generación de Energía Eléctrica Microbial Fuel Cells ( MFCs ): A Challenge for the Removal of Organic Matter and Electricity Generation, 24(6), 17–28. https://doi.org/10.4067/S0718-07642013000600004
Romero, A., Vásquez, J., & González, A. (2012). Bacterias, fuente de energía para el futuro. Tecnura, (32), 118–143. https://doi.org/http://dx.doi.org/10.14483/udistrital.jour.tecnura.2012.2.a10
Saba, B., Khan, M., Christy, A. D., & Veno, B. (2018). PT US. Bioelectrochemistry, #pagerange#. https://doi.org/10.1016/j.bioelechem.2018.12.005
Shen, X., Zhang, J., Liu, D., Hu, Z., & Liu, H. (2018). Enhance performance of microbial fuel cell coupled surface fl ow constructed wetland by using submerged plants and enclosed anodes. Chemical Engineering Journal, 351(June), 312–318. https://doi.org/10.1016/j.cej.2018.06.117
Shi, Y., Yang, X., Ning, X., & Yang, Q. (2018). Research progress of microbial fuel cell and constructed wetland coupling system Research progress of microbial fuel cell and constructed wetland coupling system. https://doi.org/10.1088/1755-1315/199/5/052014
Song, H., Li, H., Zhang, S., Yang, Y., Zhang, L., & Xu, H. (2018). Fate of sulfadiazine and its corresponding resistance genes in up- fl ow microbial fuel cell coupled constructed wetlands : E ff ects of circuit operation mode and hydraulic retention time. Chemical Engineering Journal, 350(June), 920–929. https://doi.org/10.1016/j.cej.2018.06.035
Srivastava, P., Yadav, A. K., & Mishra, B. K. (2015). Contributed Equally , * Corresponding Author : Dr . Asheesh K Yadav , Tel . + 91-674-. BIORESOURCE TECHNOLOGY. https://doi.org/10.1016/j.biortech.2015.05.072
USEPA. (1988). Design Manual: Constructed Wetlands and Aquatic Plant Systems for Municipal Wastewater Treatment, (September), 92. https://doi.org/EPA/625/1-88/022
Wang, J., Song, X., Wang, Y., Bai, J., Bai, H., Yan, D., … Dong, G. (2017). Bioresource Technology Bioelectricity generation , contaminant removal and bacterial community distribution as a ff ected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell. Bioresource Technology, 245(September), 372–378. https://doi.org/10.1016/j.biortech.2017.08.191
Wang, X., Tian, Y., Liu, H., Zhao, X., & Peng, S. (2019a). Science of the Total Environment Optimizing the performance of organics and nutrient removal in constructed wetland – microbial fuel cell systems. Science of the Total Environment, 653, 860–871. https://doi.org/10.1016/j.scitotenv.2018.11.005
Wang, X., Tian, Y., Liu, H., Zhao, X., & Peng, S. (2019b). Science of the Total Environment The in fl uence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands. Science of the Total Environment, 656, 270–279. https://doi.org/10.1016/j.scitotenv.2018.11.328
Wu, S., Kuschk, P., Brix, H., Vymazal, J., & Dong, R. (2014). ScienceDirect Development of constructed wetlands in performance intensifications for wastewater treatment : A nitrogen and organic matter targeted review. Water Research, 57, 40–55. https://doi.org/10.1016/j.watres.2014.03.020
Wu, S., Lv, T., Lu, Q., Ajmal, Z., & Dong, R. (2017). Treatment of anaerobic digestate supernatant in microbial fuel cell coupled constructed wetlands: Evaluation of nitrogen removal, electricity generation, and bacterial community response. Science of the Total Environment, 580, 339–346. https://doi.org/10.1016/j.scitotenv.2016.11.138
Xie, T., Jing, Z., Hu, J., Yuan, P., Liu, Y., & Cao, S. (2018). Degradation of nitrobenzene-containing wastewater by a microbial-fuel-cell- coupled constructed wetland. Ecological Engineering, 112(August 2017), 65–71. https://doi.org/10.1016/j.ecoleng.2017.12.018
Xu, F., Cao, F., Kong, Q., Zhou, L., Yuan, Q., Zhu, Y., … Wang, Z. (2018). Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chemical Engineering Journal, 339(January), 479–486. https://doi.org/10.1016/j.cej.2018.02.003
Xu, L., Zhao, Y., Tang, C., & Doherty, L. (2018). In fl uence of glass wool as separator on bioelectricity generation in a constructed wetland-microbial fuel cell. Journal of Environmental Management, 207, 116–123. https://doi.org/10.1016/j.jenvman.2017.11.035
Xu, L., Zhao, Y., Wang, X., & Yu, W. (2018). Applying multiple bio-cathodes in constructed wetland-microbial fuel cell for promoting energy production and bioelectrical derived nitri fi cation- denitri fi cation process. Chemical Engineering Journal, 344(March), 105–113. https://doi.org/10.1016/j.cej.2018.03.065
Yang, Q. (2016). Treatment of Oil Wastewater and Electricity Generation by Integrating Constructed Wetland with. https://doi.org/10.3390/ma9110885
Yin, T., Zhang, H., Yang, G., & Wang, L. (2019). Polyaniline composite TiO2 nanosheets modified carbon paper electrode as a high performance bioanode for microbial fuel cells. Synthetic Metals, 252(November 2018), 8–14. https://doi.org/10.1016/j.synthmet.2019.03.027
Zhang, S., Yang, X., Li, H., Song, H., Wang, R., & Dai, Z. (2017). Bioresource Technology Degradation of sulfamethoxazole in bioelectrochemical system with power supplied by constructed wetland-coupled microbial fuel cells. Bioresource Technology, 244(May), 345–352. https://doi.org/10.1016/j.biortech.2017.07.143
Zhang, Y., Liu, M., Zhou, M., Yang, H., Liang, L., & Gu, T. (2019). Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production : Synergistic e ff ects , mechanisms and challenges. Renewable and Sustainable Energy Reviews, 103(November 2018), 13–29. https://doi.org/10.1016/j.rser.2018.12.027