SÍNTESIS DE DERIVADOS DE 1, 2, 3 TRIAZOL-QUITOSANO A PARTIR DE REACCIONES DE QUÍMICA CLICK Y DESARROLLO DE PELÍCULAS ACTIVAS

Contenido principal del artículo

Alisson Pozo-Llumiquinga
Sebastián Serrano-León
Pablo Bonilla-Valladares
Rommy Teran-Soto
Monserrat Naranjo-López
Alejandro Osorio-Quiroz
Trosky Yánez-Darquea
José-Iván Chango
Luis Carrión-Matamoros
Carlota Moreno-Guerrero
Christian Alcívar-León
https://orcid.org/0000-0001-6987-3107

Resumen

El uso descontrolado de empaques alimenticios, y la ineficiencia de procesos de reciclaje han despertado el interés en la búsqueda de macromoléculas derivadas de fuentes naturales como reemplazo de los plásticos actuales. En este sentido, se desarrolló la síntesis de derivados de quitosano a partir de reacciones de Química Click, utilizando quitosano extraído de exoesqueletos de camarón. Los derivados de 1, 2, 3 triazol-quitosano se obtuvieron mediante reacciones de cicloadición azida-alquino asistidas por ultrasonido sobre una matriz de quitosano de peso molecular medio de 453 kDa, y un grado de desacetilación mayor al 90%.  Se realizaron ensayos de actividad antimicrobiana frente a S. aureus, K. pneumoniae, P. aeruginosa, E. coli y S. typhimurium en concentraciones de 1% y 2%, se observó actividad antimicrobiana de todos los derivados, con halos de inhibición iguales o superiores a gentamicina. Asimismo, se desarrollaron películas de cada derivado utilizando PVA como plastificante. La resistencia a la tracción de las películas estuvo entre 42 MPa y 68 MPa, siendo mayores al valor obtenido para un plástico de empaque común, 41 MPa. Los ensayos de DSC evidenciaron la estabilidad térmica del quitosano y sus derivados, y permitieron determinar sus temperaturas de transición vítrea. Se realizaron medidas de AFM de las películas, la rugosidad mostro micro superficies homogéneas. Por lo tanto, las películas con derivados de 1, 2, 3 triazol-quitosano presentaron características mecánicas mejoradas, actividad antimicrobiana, temperaturas elevadas de transición vítrea y rugosidad uniforme a nivel micrométrico que le brindan potencial aplicación para el desarrollo de empaques alimenticios.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Sección
Artículos Científicos

Citas

Abdelghany, A. M., Aboelwafa, M. A. and Meikhail, M. S. (2021) ‘Experimental and DFT studies on the structural and optical properties of chitosan/polyvinyle pyrrolidone/ZnS nano composites’, Research Square, pp. 1–23. Available at: https://doi.org/10.21203/rs.3.rs-331123/v1.

Aboelnaga, A., Shaarawy, S. and Hagar, M. (2017). A novel chitosan 3-amino-1,2,4-triazole hybrid: Preparation and its effects on cotton fabric properties, Journal of Taibah University for Science, 11(5), 768–774.

Aljilji, A. et al. (2020). Mechanical properties of dried fruit packaging materials, Periodicals of Engineering and Natural Sciences, 8(4), 2547–2552.

Ardean, C. et al. (2021). Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization, International Journal of Molecular Sciences, 22(14), 7749.

Arshad, M., Zubair, M. and Ullah, A. (2020) Miscibility, properties, and biodegradability of chitin and chitosan, Handbook of Chitin and Chitosan. INC. doi: 10.1016/b978-0-12-817970-3.00012-2.

Bhargava, N. et al. (2020). Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review, Trends in Food Science and Technology, 105(November), 385–401.

Brugnerotto, J. et al. (2001). An infrared investigation in relation with chitin and chitosan characterization, Polymer, 42(8), 3569–3580.

Chandra, S. et al. (2016) ‘Preparation, characterization and performance evaluation of chitosan as an adsorbent for remazol red’, 2 (March).

Chandrasekharan, A. et al. (2019). Acid-treated water-soluble chitosan suitable for microneedle-assisted intracutaneous drug delivery, Pharmaceutics, 11(5), pp. 1–14.

Chauhan, N. P. S. et al. (2019) Heterotelechelic multiblock polymers using click chemistry, Advanced Functional Polymers for Biomedical Applications. Elsevier Inc. doi: 10.1016/b978-0-12-816349-8.00007-2.

Dong, Y. et al. (2004). Studies on glass transition temperature of chitosan with four techniques, Journal of Applied Polymer Science, 93(4), 1553–1558.

Gonçalves, C., Ferreira, N. and Lourenço, L. (2021). Production of low molecular weight chitosan and chitooligosaccharides (COS): A review, Polymers, 13(15), 1–23.

Goy, R. C., Morais, S. T. B. and Assis, O. B. G. (2016). Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. Coli and S. aureus growth, Revista Brasileira de Farmacognosia, 26(1), 122–127.

Hazi, T. et al. (2021) ‘Synthesis And Characterization of Vancomycin-Loaded Chitosan Nanoparticles For Drug Delivery’, Research Square. Available at: https://doi.org/10.21203/rs.3.rs-597221/v1.

Hein, C. D., Liu, X. M. and Wang, D. (2008). Click chemistry, a powerful tool for pharmaceutical sciences, Pharmaceutical Research, 25(10), 2216–2230.

Kou, S. (Gabriel), Peters, L. M. and Mucalo, M. R. (2021) Chitosan: A review of sources and preparation methods, International Journal of Biological Macromolecules. Elsevier B.V. doi: 10.1016/j.ijbiomac.2020.12.005.

Kritchenkov, A. S., Egorov, A. R., Kurasova, M. N., et al. (2019). Novel non-toxic high efficient antibacterial azido chitosan derivatives with potential application in food coatings, Food Chemistry, 301(December), 125247.

Kritchenkov, A. S., Egorov, A. R., Dysin, A. P., et al. (2019). Ultrasound-assisted Cu(I)-catalyzed azide-alkyne click cycloaddition as polymer-analogous transformation in chitosan chemistry. High antibacterial and transfection activity of novel triazol betaine chitosan derivatives and their nanoparticles, International Journal of Biological Macromolecules, 137(September), 592–603.

Kritchenkov, A. S. et al. (2020). Active antibacterial food coatings based on blends of succinyl chitosan and triazole betaine chitosan derivatives, Food Packaging and Shelf Life, 25(February), p. 100534.

Kumirska, J. et al. (2010). Application of spectroscopic methods for structural analysis of chitin and chitosan, Mar Drugs, 8(5), 1567–1636.

Li, J. and Zhuang, S. (2020). Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives, European Polymer Journal, 138(September), 109984.

Min, T. et al. (2020). Highly efficient antifogging and antibacterial food packaging film fabricated by novel quaternary ammonium chitosan composite, Food Chemistry, 308(March), 125682.

Negrea, P. et al. (2015). The study of infrared spectrum of chitin and chitosan extract as potential sources of biomass, Digest Journal of Nanomaterials and Biostructures, 10(4), 1129–1138.

Queiroz, M. F. et al. (2015). Does the use of chitosan contribute to oxalate kidney stone formation?, Mar Drugs, 13(1), 141–158.

Rafique, A. et al. (2016). Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review, International Journal of Biological Macromolecules, 87(June), 141–154.

Rahman, N. A. et al. (2019). Synthesis and characterizations of o-nitrochitosan based biopolymer electrolyte for electrochemical devices, PLOS ONE, 14(2), 1–17.

Ryu, H. J. et al. (2013). Synthesis of click-coupled graphene sheet with chitosan: Effective exfoliation and enhanced properties of their nanocomposites, European Polymer Journal, 49(9), 2627–2634.

Saba, T. et al. (2018). Efficient Removal of Reactive Orange 107 Dye from Aqueous Media by Shrimp Shell Derived Chitosan Functionalized Magnetic Nanoparticles, American Journal of Analytical Chemistry, 09(12), 633–653.

Sedghi, R., Shaabani, A. and Sayyari, N. (2020). Electrospun triazole-based chitosan nanofibers as a novel scaffolds for bone tissue repair and regeneration, Carbohydrate Polymers, 230(February), 115707.

Shah, A., Hussain, I. and Murtaza, G. (2018). Chemical synthesis and characterization of chitosan/silver nanocomposites films and their potential antibacterial activity, International Journal of Biological Macromolecules, 116(September), 520–529.

Singh, R. et al. (2021) Environmental hazards and biodegradation of plastic waste: challenges and future prospects, Bioremediation for Environmental Sustainability. INC. doi: 10.1016/b978-0-12-820524-2.00009-2.

Sunitha, T. G. et al. (2021). Micro-plastic pollution along the Bay of Bengal coastal stretch of Tamil Nadu, South India, Science of the Total Environment, 756(February), 144073.

Tan, W. et al. (2016). Synthesis and antioxidant property of novel 1,2,3-triazole-linked starch derivatives via “click chemistry”, International Journal of Biological Macromolecules, 82(January), 404–410.

Tan, W., Li, Q., et al. (2018). Novel cationic chitosan derivative bearing 1,2,3-triazolium and pyridinium: Synthesis, characterization, and antifungal property, Carbohydrate Polymers, 182(May), 180–187.

Tan, W., Zhang, J., et al. (2018). Synthesis and antioxidant action of chitosan derivatives with amino-containing groups via azide-alkyne click reaction and N-methylation, Carbohydrate Polymers, 199(November), 583–592.

Tan, W. et al. (2020). Enhanced antifungal activity of novel cationic chitosan derivative bearing triphenylphosphonium salt via azide-alkyne click reaction, International Journal of Biological Macromolecules, 165(December), 1765–1772.

Thakhiew, W. et al. (2015). Improvement of mechanical properties of chitosan-based films via physical treatment of film-forming solution, Journal of Food Engineering, 158(August), 66–72.

Varma, R. and Vasudevan, S. (2020) Extraction, characterization, and antimicrobial activity of chitosan from horse mussel modiolus modiolus, ACS Omega, 5(32), 20224–20230.

Weißpflog, J. et al. (2021) Characterization of chitosan with different degree of deacetylation and equal viscosity in dissolved and solid state – Insights by various complimentary methods’, International Journal of Biological Macromolecules, 171(February), 242–261.

Welden, N. A. (2020) The environmental impacts of plastic pollution, Plastic Waste and Recycling. Elsevier Inc. doi: 10.1016/b978-0-12-817880-5.00008-6.

William, W. and Wid, N. (2019) Comparison of extraction sequence on yield and physico-chemical characteristic of chitosan from shrimp shell waste, Journal of Physics: Conference Series, 1358(1).

Xi, W. et al. (2014). Click chemistry in materials science, Advanced Functional Materials, 24(18), 2572–2590.

Zhang, Z. et al. (2018). A novel approach to 1,2,3-triazole grafted chitosans via modified Wolff’s cyclocondensation, European Polymer Journal, 98(August), 492–498.