POTENTIAL USE OF NANOMATERIALS COMBINED WITH POLYLACTIC ACID (PLA) IN ORTHOPEDIC PROSTHESES: A REVIEW
Main Article Content
Abstract
Traditional petroleum-derived materials like polyethylene and polypropylene are the most commonly utilized in the field of prosthetics, but the movement toward environmental conservation necessitates the investigation of novel biocompatible and biodegradable materials. Due to its low cost, polylactic acid (PLA) is a polymer derived from natural sources that is utilized in a variety of applications, including orthopedic prosthesis. Nanoparticles of various natures can be added to improve the mechanical characteristics of PLA with the advancement of nanotechnology, although there is insufficient information. The physical and chemical characteristics of PLA, as well as the requirements for 3D printing with it, are described in this review. Nanocellulose, chitosan nanofibers, carbon nanotubes, graphene, titanium oxide, iron oxide nanoparticles, silver nanoparticles, and mesoporous silica nanoparticles are among the nanomaterials studied. The chemical, mechanical, and biocompatibility aspects of the material have been studied. As a result, some nanomaterials have been mixed with PLA, and studies comparing their mechanical characteristics reveal that nanoparticles produce better outcomes. Very few in vivo studies have been performed, only carbon nanotubes, graphene, titanium oxide, silver nanoparticles and mesoporous silica nanoparticles. The introduction of nanoparticles could possibly enhance the mechanical properties of PLA, but further research is needed, and animal models should be utilized to evaluate their effect at the tissue level and decide whether they are acceptable for combination or coating prostheses.
Downloads
Article Details
- The authors agree to respect the academic information of other authors, and to assign the copyrights to the journal infoANALÍTICA, so that the article can be edited, published and distributed.
- The content of the scientific articles and the publications that appear in the journal is the exclusive responsibility of their authors. The distribution of the articles published in the infoANALÍTICA Journal is done under a Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
References
Ahn, E. Y., Jin, H., & Park, Y. (2019). Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Materials Science and Engineering C, 101, 204–216. https://doi.org/10.1016/j.msec.2019.03.095
Akbari, A., Majumder, M., & Tehrani, A. (2015). Polylactic Acid (PLA) Carbon Nanotube Nanocomposites. In Handbook of Polymer Nanocomposites. Processing, Performance and Application (pp. 283–297). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-45229-1_45
Amarnath, C. A., Nanda, S. S., Papaefthymiou, G. C., Yi, D. K., & Paik, U. (2013). Nanohybridization of Low-Dimensional Nanomaterials: Synthesis, Classification, and Application. Critical Reviews in Solid State and Materials Sciences, 38(1), 1–56. https://doi.org/10.1080/10408436.2012.732545
Anand Kumar, S., & Shivraj Narayan, Y. (2019). Tensile Testing and Evaluation of 3D-Printed PLA Specimens as per ASTM D638 Type IV Standard. In U. et al. Chandrasekhar (Ed.), Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018) (pp. 79–95). Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-13-2718-6_9
Andrade Guel, M. L., López López, L. I., & Sáenz Galindo, A. (2012). Nanotubos de carbono: funcionalización y aplicaciones biológicas. Revista Mexicana de Ciencias Farmacéuticas, 43(3).
Ángel-lópez, H. Z. Del. (2017). Biopolímero reforzado con nanotubos de carbono para su aplicación como andamios en la Regeneración de Tejido Óseo. In Revistacid.Itslerdo.Edu.Mx (Issue 6501). http://revistacid.itslerdo.edu.mx/coninci2017/32 Biopolímero reforzado con nanotubos de carbono para su.pdf
ArthritisFoundation. (2016). Cirugía: Tipos de reemplazos. All You Need to Know About Joint Surgery. http://espanol.arthritis.org/espanol/tratamientos/cirugia/cirugia-tipos-reemplazos/
Asefa, T., & Tao, Z. (2012). Biocompatibility of Mesoporous Silica Nanoparticles. Chemical Research in Toxicology, 25(11), 2265–2284. https://doi.org/10.1021/tx300166u
Auras, R., Harte, B., & Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, 4(9), 835–864. https://doi.org/10.1002/mabi.200400043
Botia Prada, G. C., & Orjuela Abril, M. S. (2016). Desarrollo de Green Thermosets: Nueva Tecnología. Tercer Encuentro Internacional Universidad - Empresa En El Sector de La Ingeniería.
Cakir, S., Aycicek, M., & Akinci, A. (2018). Investigation of the mechanical and physical properties of PLA produced by injection molding for matrix material of polymer composites. Materials Science: Advanced Composite Materials, 2(1). https://doi.org/10.18063/msacm.v2i1.607
Carmona, E. R., Plaza, T., Recio-Sánchez, G., & Parodi, J. (2018). Generation of a protocol for the synthesis of chitosan nanoparticles loaded with florfenicol through the ionic gelation method. Revista de Investigaciones Veterinarias Del Peru, 29(4), 1195–1202. https://doi.org/10.15381/rivep.v29i4.15203
Casalini, T., Rossi, F., Castrovinci, A., & Perale, G. (2019). A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00259
Chen, X., & Schluesener, H. J. (2008). Nanosilver: A nanoproduct in medical application. Toxicology Letters, 176(1), 1–12. https://doi.org/10.1016/j.toxlet.2007.10.004
Chomoucka, J., Drbohlavova, J., Huska, D., Adam, V., Kizek, R., & Hubalek, J. (2010). Magnetic nanoparticles and targeted drug delivering. Pharmacological Research, 62(2), 144–149. https://doi.org/10.1016/j.phrs.2010.01.014
Colorado, A. C., Agudelo, C. A., & Moncada, M. E. (2013). Análisis de biomateriales para uso en ingeniería de tejido de piel: revisión. Revista Ingeniería Biomédica, 7(14), 11–23.
da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., & Schroeder, A. (2018). Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 340, 9–14. https://doi.org/10.1016/j.cej.2018.01.010
DeStefano, V., Khan, S., & Tabada, A. (2020). Applications of PLA in modern medicine. Engineered Regeneration, 1(August), 76–87. https://doi.org/10.1016/j.engreg.2020.08.002
Dev, A., Binulal, N. S., Anitha, A., Nair, S. V, Furuike, T., Tamura, H., & Jayakumar, R. (2010). Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydrate Polymers, 80(3), 833–838. https://doi.org/10.1016/j.carbpol.2009.12.040
Dresselhaus, M. S., Dresselhaus, G., Eklund, P. C., & Rao, A. M. (2000). Carbon Nanotubes. In W. Andreoni (Ed.), The Physics of Fullerene-Based and Fullerene-Related Materials (pp. 331–379). Springer Netherlands. https://doi.org/10.1007/978-94-011-4038-6_9
Dufresne, A. (2013). Nanocellulose: a new ageless bionanomaterial. Materials Today, 16(6), 220–227. https://doi.org/10.1016/j.mattod.2013.06.004
Ee, L. Y., & Yau Li, S. F. (2021). Recent advances in 3D printing of nanocellulose: structure, preparation, and application prospects. Nanoscale Advances, 3(5), 1167–1208. https://doi.org/10.1039/D0NA00408A
El-Ghaouth, A., Smilanick, J. L., & Wilson, C. L. (2000). Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit. Postharvest Biology and Technology, 19(1), 103–110. https://doi.org/10.1016/S0925-5214(00)00076-4
Enyashin, A. N., & Ivanovskii, A. L. (2007). Functionalization of carbon nanotubes by covalently bonded graphite nanoplatelets: a theoretical study. Mendeleev Communications, 17(4), 199–201. https://doi.org/10.1016/j.mencom.2007.06.003
Facca, S., Lahiri, D., Fioretti, F., Messadeq, N., Mainard, D., Benkirane-Jessel, N., & Agarwal, A. (2011). In vivo osseointegration of nano-designed composite coatings on titanium implants. ACS Nano, 5(6), 4790–4799. https://doi.org/10.1021/nn200768c
Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 107, 367–392. https://doi.org/10.1016/j.addr.2016.06.012
French, A. D. (2014). Idealized powder diffraction patterns for cellulose polymorphs. Cellulose, 21(2), 885–896. https://doi.org/10.1007/s10570-013-0030-4
Ghasemi, R., Abdollahi, M., Emamgholi Zadeh, E., Khodabakhshi, K., Badeli, A., Bagheri, H., & Hosseinkhani, S. (2018). mPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human Growth Hormone (rhGH). Scientific Reports, 8(1), 9854. https://doi.org/10.1038/s41598-018-28092-8
Gherasim, O., Grumezescu, A. M., Grumezescu, V., Iordache, F., Vasile, B. S., & Holban, A. M. (2020). Bioactive Surfaces of Polylactide and Silver Nanoparticles for the Prevention of Microbial Contamination. Materials, 13(3), 768. https://doi.org/10.3390/ma13030768
Gómez Blázquez, G. (2019). Proyecto de Diseño de una Prótesis a Partir de Fabricación Aditiva (Impresión 3D).
Gong, D., Grimes, C. A., Varghese, O. K., Hu, W., Singh, R. S., Chen, Z., & Dickey, E. C. (2001). Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 16(12), 3331–3334. https://doi.org/10.1557/JMR.2001.0457
Göpferich, A. (1996). Mechanisms of polymer degradation and erosion. Biomaterials, 17(2), 103–114. https://doi.org/10.1016/0142-9612(96)85755-3
Gregor, A., Filová, E., Novák, M., Kronek, J., Chlup, H., Buzgo, M., Blahnová, V., Lukášová, V., Bartoš, M., Nečas, A., & Hošek, J. (2017). Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. Journal of Biological Engineering, 11(1), 31. https://doi.org/10.1186/s13036-017-0074-3
Gumrah Dumanli, A. (2017). Nanocellulose and its Composites for Biomedical Applications. Current Medicinal Chemistry, 24(5), 512–528. https://doi.org/10.2174/0929867323666161014124008
Hernández-Cocoletzi, H., Águila Almanza, E., Flores Agustin, O., Viveros Nava, E. L., & Ramos Cassellis, E. (2009). Obtención y Caracterización de Quitosano a Partir de Exoesqueletos de Camarón. Superficies y Vacío, 22(3), 57–60.
Hou, A.-L., & Qu, J.-P. (2019). Super-Toughened Poly(lactic Acid) with Poly(ε-caprolactone) and Ethylene-Methyl Acrylate-Glycidyl Methacrylate by Reactive Melt Blending. Polymers, 11(5), 771. https://doi.org/10.3390/polym11050771
Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev., 41(2), 666–686. https://doi.org/10.1039/C1CS15078B
Jiang, T., James, R., Kumbar, S. G., & Laurencin, C. T. (2014). Chitosan as a Biomaterial: Structure, Properties, and Applications in Tissue Engineering and Drug Delivery. In Natural and Synthetic Biomedical Polymers (pp. 91–113). Elsevier. https://doi.org/10.1016/B978-0-12-396983-5.00005-3
Kalarikkal, N., Augustine, R., Oluwafemi, O. S., K. S., J., & Thomas, S. (2016). Nanomedicine and Tissue Engineering: State of the Art and Recent Trends. Apple Academic Press, Inc.
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of Titanium Oxide Nanotube. Langmuir, 14(12), 3160–3163. https://doi.org/10.1021/la9713816
Khanna, P. K., Singh, N., Charan, S., Subbarao, V. V. V. S., Gokhale, R., & Mulik, U. P. (2005). Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Materials Chemistry and Physics, 93(1), 117–121. https://doi.org/10.1016/j.matchemphys.2005.02.029
Komoto, D., Ikeda, R., Furuike, T., & Tamura, H. (2018). Preparation of Chitosan-Coated Poly(L-Lactic Acid) Fibers for Suture Threads. Fibers, 6(4), 84. https://doi.org/10.3390/fib6040084
Kucharczyk, P., Pavelková, A., Stloukal, P., & Sedlarík, V. (2016). Degradation behaviour of PLA-based polyesterurethanes under abiotic and biotic environments. Polymer Degradation and Stability, 129, 222–230. https://doi.org/10.1016/j.polymdegradstab.2016.04.019
Kumar, N., Chauhan, N. S., Mittal, A., & Sharma, S. (2018). TiO2 and its composites as promising biomaterials: a review. BioMetals, 31(2), 147–159. https://doi.org/10.1007/s10534-018-0078-6
Liao, C., Li, Y., & Tjong, S. C. (2019). Antibacterial Activities of Aliphatic Polyester Nanocomposites with Silver Nanoparticles and/or Graphene Oxide Sheets. Nanomaterials, 9(8), 1102. https://doi.org/10.3390/nano9081102
Lin, N., & Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025
Liu, W., Zhou, J., Ma, Y., Wang, J., & Xu, J. (2017). Fabrication of PLA Filaments and its Printable Performance. IOP Conference Series: Materials Science and Engineering, 275, 12033. https://doi.org/10.1088/1757-899X/275/1/012033
Lu, H. W., Liu, S. H., Wang, X. L., Qian, X. F., Yin, J., & Zhu, Z. K. (2003). Silver nanocrystals by hyperbranched polyurethane-assisted photochemical reduction of Ag+. Materials Chemistry and Physics, 81(1), 104–107. https://doi.org/10.1016/S0254-0584(03)00147-0
Mediforum. (2016). La nanotecnología es el nuevo gran aliado odontológico.
Moniruzzaman, M., & Winey, K. I. (2006). Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules, 39(16), 5194–5205. https://doi.org/10.1021/ma060733p
Nagarajan, V., Mohanty, A. K., & Misra, M. (2016). Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance. ACS Sustainable Chemistry & Engineering, 4(6), 2899–2916. https://doi.org/10.1021/acssuschemeng.6b00321
Ñauta Ñauta, A. E., & Vergara Idrovo, M. R. (2017). Simulación de Termofluidos de PLA Natural y ABS en el Proceso de Impresión en 3D.
Oksiuta, Z., Jalbrzykowski, M., Mystkowska, J., Romanczuk, E., & Osiecki, T. (2020). Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. Polymers, 12(12), 2939. https://doi.org/10.3390/polym12122939
Parwe, S. P., Chaudhari, P. N., Mohite, K. K., Selukar, B. S., Nande, S. S., & Garnaik, B. (2014). Synthesis of ciprofloxacin-conjugated poly (L-lactic acid) polymer for nanofiber fabrication and antibacterial evaluation. International Journal of Nanomedicine, 1463. https://doi.org/10.2147/IJN.S54971
Peters, R. J. B., van Bemmel, G., Herrera-Rivera, Z., Helsper, H. P. F. G., Marvin, H. J. P., Weigel, S., Tromp, P. C., Oomen, A. G., Rietveld, A. G., & Bouwmeester, H. (2014). Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods To Define Nanoparticles. Journal of Agricultural and Food Chemistry, 62(27), 6285–6293. https://doi.org/10.1021/jf5011885
Petersen, D. K., Naylor, T. M., & Halen, J. P. Ver. (2014). Current and future applications of nanotechnology in plastic and reconstructive surgery. Plastic and Aesthetic Research, 1, 43–50. https://doi.org/10.4103/2347-9264.139698
Pinto, A. M., Moreira, S., Gonçalves, I. C., Gama, F. M., Mendes, A. M., & Magalhães, F. D. (2013). Biocompatibility of poly(lactic acid) with incorporated graphene-based materials. Colloids and Surfaces B: Biointerfaces, 104, 229–238. https://doi.org/10.1016/j.colsurfb.2012.12.006
Qiu, T. Y., Song, M., & Zhao, L. G. (2016). Testing, characterization and modelling of mechanical behaviour of poly (lactic-acid) and poly (butylene succinate) blends. Mechanics of Advanced Materials and Modern Processes, 2(1), 7. https://doi.org/10.1186/s40759-016-0014-9
Rajapakse, R. M. G., Wijesinghe, W. P. S. L., Mantilaka, M. M. M. G. P. G., Chathuranga Senarathna, K. G., Herath, H. M. T. U., Premachandra, T. N., Ranasinghe, C. S. K., Rajapakse, R. P. V. J., Edirisinghe, M., Mahalingam, S., Bandara, I. M. C. C. D., & Singh, S. (2016). Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces. Materials Science and Engineering C, 63, 172–184. https://doi.org/10.1016/j.msec.2016.02.053
Roberts, G. A. F. (1992). Structure of Chitin and Chitosan. In Chitin Chemistry (pp. 1–53). Macmillan Education UK. https://doi.org/10.1007/978-1-349-11545-7_1
Sangeetha, V., Sudha, P. N., Gomathi, T., & Jayaprabakar, J. (2019). Fabrication of nanochitosan based biocompatible polymer blend for bone tissue engineering applications. Digest Journal of Nanomaterials and Biostructures, 14(4), 963–972.
Segura González, E. A. (2016). Diseño, caracterización y comportamiento en servicio de materiales basados en ácido poliláctico ( PLA ) con potencial utilidad en el empaquetado de alimentos. http://hdl.handle.net/10016/23514
Sha, L., Chen, Z., Chen, Z., Zhang, A., & Yang, Z. (2016). Polylactic Acid Based Nanocomposites: Promising Safe and Biodegradable Materials in Biomedical Field. International Journal of Polymer Science, 2016, 1–11. https://doi.org/10.1155/2016/6869154
Shebi, A., & Lisa, S. (2019). Evaluation of biocompatibility and bactericidal activity of hierarchically porous PLA-TiO2 nanocomposite films fabricated by breath-figure method. Materials Chemistry and Physics, 230, 308–318. https://doi.org/10.1016/j.matchemphys.2019.03.045
Sonseca, A., Madani, S., Rodríguez, G., Hevilla, V., Echeverría, C., Fernández-García, M., Muñoz-Bonilla, A., Charef, N., & López, D. (2019). Multifunctional PLA Blends Containing Chitosan Mediated Silver Nanoparticles: Thermal, Mechanical, Antibacterial, and Degradation Properties. Nanomaterials (Basel, Switzerland), 10(1). https://doi.org/10.3390/nano10010022
Tanpichai, S., & Wootthikanokkhan, J. (2016). Reinforcing abilities of microfibers and nanofibrillated cellulose in poly(lactic acid) composites. Science and Engineering of Composite Materials, 25. https://doi.org/10.1515/secm-2016-0113
Vargas Pérez, J. L., Yunga Patiño, L. F., Cajamarca Guambaña, L. F., & Matute Salinas, J. L. (2015). Diseño, construcción e implementación de prótesis biomecánica de mano derecha.
Velasco Nieto, D. (2016). Desarrollo de biomateriales celulares en base EVA, PLA Y PHB: fabricación y caracterización. https://doi.org/10.35376/10324/22235
Vyazovkin, S. (2020). Kissinger Method in Kinetics of Materials: Things to Beware and Be Aware of. Molecules, 25(12), 2813. https://doi.org/10.3390/molecules25122813
Wassel, R. A., Grady, B., Kopke, R. D., & Dormer, K. J. (2007). Dispersion of super paramagnetic iron oxide nanoparticles in poly(d,l-lactide-co-glycolide) microparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(2–3), 125–130. https://doi.org/10.1016/j.colsurfa.2006.06.012
Xiang, H., Mu, Y., Hu, C., & Luo, X. (2017). Biocompatibility and Toxicity of Polylactic Acid/Ferrosoferric Oxide Nanomagnetic Microsphere. Journal of Nanomaterials, 2017, 1–8. https://doi.org/10.1155/2017/5429063
Xu, C., Lei, C., & Yu, C. (2019). Mesoporous Silica Nanoparticles for Protein Protection and Delivery. Frontiers in Chemistry, 7, 290. https://doi.org/10.3389/fchem.2019.00290
Xu, L., Crawford, K., & Gorman, C. B. (2011). Effects of Temperature and pH on the Degradation of Poly(lactic acid) Brushes. Macromolecules, 44(12), 4777–4782. https://doi.org/10.1021/ma2000948
Yan, Q., Lei, Y., & Yuan, J. (2010). Preparation of titanium dioxide compound pigments based on kaolin substrates. Journal of Coatings Technology and Research, 7(2), 229–237. https://doi.org/10.1007/s11998-009-9172-6
Zaitsev, V. S., Filimonov, D. S., Presnyakov, I. A., Gambino, R. J., & Chu, B. (1999). Physical and Chemical Properties of Magnetite and Magnetite-Polymer Nanoparticles and Their Colloidal Dispersions. Journal of Colloid and Interface Science, 212(1), 49–57. https://doi.org/10.1006/jcis.1998.5993
Zhang, Z. (2001). A convenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization–reduction approach. Polymer, 42(19), 8315–8318. https://doi.org/10.1016/S0032-3861(01)00285-3
Zheng, M., Gu, M., Jin, Y., & Jin, G. (2001). Optical properties of silver-dispersed PVP thin film. Materials Research Bulletin, 36(5–6), 853–859. https://doi.org/10.1016/S0025-5408(01)00525-6
Zheng, X., Zhou, S., Xiao, Y., Yu, X., Li, X., & Wu, P. (2009). Shape memory effect of poly(d,l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles. Colloids and Surfaces B: Biointerfaces, 71(1), 67–72. https://doi.org/10.1016/j.colsurfb.2009.01.009
Zhou, C., Shi, Q., Guo, W., Terrell, L., Qureshi, A. T., Hayes, D. J., & Wu, Q. (2013). Electrospun Bio-Nanocomposite Scaffolds for Bone Tissue Engineering by Cellulose Nanocrystals Reinforcing Maleic Anhydride Grafted PLA. ACS Applied Materials & Interfaces, 5(9), 3847–3854. https://doi.org/10.1021/am4005072
Ziabką, M., Menaszek, E., Tarasiuk, J., & Wroński, S. (2018). Biocompatible nanocomposite implant with silver nanoparticles for otology—In vivo evaluation. Nanomaterials, 8(10). https://doi.org/10.3390/nano8100764