MANAGEMENT OF ARGENTOMETRIC WASTE FROM CHLORIDE ANALYSIS
Main Article Content
Abstract
Different service or teaching laboratories produce silver waste from chlorides with argentometric methodologies. Here we obtained experimental conditions for silver recovery using electrochemical techniques. Firstly, a thermodynamic study was made to know the behavior of the several species of silver in aqueous solution. Then, several trials were conducted with a potentiostat into a three-electrode cell with potentiodynamic sweeps, processing synthetic waste make with Mohr methods, to obtain experimental conditions to reduce Ag+. A continuation, synthetic and real waste were treated individually into a two-electrodes cell, found a silver recovery of 99,6% y 93,3% respectively. These results confirm the feasibility of recovering metallic silver from waste, generated from argentometric methods, also this data provides an initial point to develop process for silver treatment a large scale.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- The authors agree to respect the academic information of other authors, and to assign the copyrights to the journal infoANALÍTICA, so that the article can be edited, published and distributed.
- The content of the scientific articles and the publications that appear in the journal is the exclusive responsibility of their authors. The distribution of the articles published in the infoANALÍTICA Journal is done under a Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
References
Ajiwe, V. I. E., & Anyadiegwu, I. E. (2000). Recovery of silver from industrial wastes, cassava solution effects. Separation and Purification Technology, 18(2), 89–92. https://doi.org/10.1016/S1383-5866(99)00048-9
Asamblea Nacional. (2013, November 29). Reglamento de etiquetado permitirá seleccionar alimentos saludables. Control Sanitario.
Ayres, G. (1970). Análisis Químico Cuantitativo (2da ed.). Ediciones del Castillo.
Bard, A. J., & Faulkner, L. (2001). Electrochemical Methods, Fundamentals and Applications (2nd ed.). Jhon Willey & Sons, Inc.
Bard, A. J., Inzelt, G., & Scholz, F. (2012). Electrochemical Dictionary. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-29551-5
Bianchi, A., & Garcia-España, E. (1999). The Use of Calculated Species Distribution Diagrams to Analyze Thermodynamic Selectivity. Journal of Chemical Education, 76(12), 1727. https://doi.org/10.1021/ed076p1727
Burgot, J.-L. (2014). Ionic Equilibria in Analytical Chemistry (2012th ed.). Springer.
Dutta, N., Bagchi, D., Chawla, G., & Peter, S. C. (2024). A Guideline to Determine Faradaic Efficiency in Electrochemical CO2 Reduction. ACS Energy Letters, 9(1), 323–328. https://doi.org/10.1021/acsenergylett.3c02362
Fox, B. S., Beyer, M. K., & Bondybey, V. E. (2002). Coordination Chemistry of Silver Cations. Journal of the American Chemical Society, 124(45), 13613–13623. https://doi.org/10.1021/ja0176604
Harris, D., Berenguer Vicente, & Berenguer Ángel. (2003). Análisis Químico Cuantitativo (3rd ed.). Editorial Reverté.
Hasan, Md. M., Rakib, R. H., Hasnat, M. A., & Nagao, Y. (2020). Electroless Deposition of Silver Dendrite Nanostructure onto Glassy Carbon Electrode and Its Electrocatalytic Activity for Ascorbic Acid Oxidation. ACS Applied Energy Materials, 3(3), 2907–2915. https://doi.org/10.1021/acsaem.9b02513
Isse, A. A., Gottardello, S., Maccato, C., & Gennaro, A. (2006). Silver nanoparticles deposited on glassy carbon. Electrocatalytic activity for reduction of benzyl chloride. Electrochemistry Communications, 8(11), 1707–1712. https://doi.org/10.1016/j.elecom.2006.08.001
Kaniyankandy, S., Nuwad, J., Thinaharan, C., Dey, G. K., & Pillai, C. G. S. (2007). Electrodeposition of silver nanodendrites. Nanotechnology, 18(12), 125610. https://doi.org/10.1088/0957-4484/18/12/125610
Kishan S. Shukla. (2013). Extraction of Silver from Photographic Waste. Kankeshwaridevi Institute of Technology.
Kotrly, S., & Sucha, L. (1985). Handbook of Chemical Equilibria in Analytical Chemistry. Ellis Horwood series in analytical chemistry.
Moreno Hernandez, R., Crespo-Yapur, D. A., & Videa, M. (2021). Study of the Electrodeposition of Silver Nanoparticles on Glassy Carbon by Galvanostatic Control. ECS Transactions, 101(1), 415–423. https://doi.org/10.1149/10101.0415ecst
Padhye, L. P., Jasemizad, T., Bolan, S., Tsyusko, O. V., Unrine, J. M., Biswal, B. K., Balasubramanian, R., Zhang, Y., Zhang, T., Zhao, J., Li, Y., Rinklebe, J., Wang, H., Siddique, K. H. M., & Bolan, N. (2023). Silver contamination and its toxicity and risk management in terrestrial and aquatic ecosystems. Science of The Total Environment, 871, 161926. https://doi.org/10.1016/j.scitotenv.2023.161926
Patnaik, P. (2017). Handbook of Environmental Analysis. CRC Press. https://doi.org/10.1201/9781315151946
Rosanoff, M. A., & Hill, A. E. (1907). A Necessary Modification of Volhard’s Method for the Determination of Chlorides. Journal of the American Chemical Society, 29(3), 269–275. https://doi.org/10.1021/ja01957a003
Sreeremya, S. (2024). Recovery of Silver- Review. International Journal of Advance Research and Development, 1(2).
van Genuchten, C. M., Dalby, K. N., Ceccato, M., Stipp, S. L. S., & Dideriksen, K. (2017). Factors affecting the Faradaic efficiency of Fe(0) electrocoagulation. Journal of Environmental Chemical Engineering, 5(5), 4958–4968. https://doi.org/10.1016/j.jece.2017.09.008
Velický, M., Tam, K. Y., & Dryfe, R. A. W. (2012). On the stability of the silver/silver sulfate reference electrode. Analytical Methods, 4(5), 1207. https://doi.org/10.1039/c2ay00011c
Vogel, I. A. (1960). Química Analítica Cuantitativa (2da ed.). Kapelusz.
Wachter, I., & Štefko, T. (2021). Electrochemical Recovery of Silver Using a Simple Cell. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 29(48), 158–166. https://doi.org/10.2478/rput-2021-0017