Aplicaciones de materiales mesoporosos en la ingeniería del tejido óseo

Contenido principal del artículo

Leglys Contreras-Vargas
https://orcid.org/0000-0002-0427-9622
Karem Noris-Suarez
https://orcid.org/0000-0002-7894-7021
Gema Gonzalez

Resumen

La ingeniería de tejidos se define como un área multidisciplinaria e interdisciplinaria cuya función principal es proponer soluciones novedosas que promuevan la regeneración o reemplazo de tejidos dañados. Las patologías óseas han sido tratadas tradicionalmente con implantes de tejido donado (injertos, aloinjertos o xenoinjertos), sin embargo, dichos tratamientos han presentado limitaciones que han promovido el desarrollo y evolución de nuevas estrategias, como es el desarrollo de la ingeniería de tejidos y de biomateriales que puedan fungir como andamios y/o matrices que puedan funcionar como liberadores de drogas. En este sentido, los materiales mesoporosos se proponen como biomateriales bioactivos, cuya característica resaltante es la gran área superficial que presentan debido a sus canales de dimensiones nanométricas. En los últimos años se ha tenido un especial interés en la sílice mesoporosa, ya que es capaz de adsorber una alta cantidad de fármaco y proporcionar una liberación controlada del mismo; también ha resultado ser estimuladora de la osteogénesis aplicándose con grandes expectativas en la regeneración ósea. El presente artículo hace una revisión de las aplicaciones de los materiales mesoporosos a base de sílice en la ingeniería del tejido óseo, tomando en cuenta la importancia del tamaño del poro y biocompatibilidad en el momento de emplearlos como sistemas de adhesión de células y liberación de fármacos.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Sección
Artículos de revisión

Citas

Abarrategui, A. (2008). Estudio del Quitosano como Biomaterial Portador de rhBMP-2: Desarrollo, Caracterización y Aplicabilidad en Regeneración de Tejido Óseo. Universidad Complutense de Madrid: Tesis Doctoral.

Al-Kady, A., Gaber, M., Mohamed, M., Hussein, E., y Ebeid. (2011). Nanostructure-loaded mesoporous silica for controlled release of coumarin derivatives: A novel testing of the hyperthermia effect. European Journal of Pharmaceutics and Biopharmaceutics. 77: 66–74.

Beck, J., Vartuli, J., Roth, W., Leonowicz, M., Kresge, C., Schmitt, K., Chu, C., Olson, D., Sheppard, E., McCullen, S., Higgins, J. y Schlenker, J. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. American Chemical Society. 114: 10834–10843.

Colilla, M y Vallet-Regi, M. (2011). Inorganic and Hybrid Controlled Release Systems Chapter 4. Ordered Mesoporous Silica Materials (1st Ed. 497-514) Universidad Complutense de Madrid, Spain, Elsevier Ltd.

Chanes-Cuevas, O.A., Perez-Soria, A., Cruz-Maya I., Guarino V. y Alvarez-Perez M.A., (2018) Macro-, micro- and mesoporous materials for tissue engineering applications AIMS Materials Science, 5(6): 1124–1140.

Chen, L., Zhou, X. y He, C. (2019). Mesoporous silica nanoparticles for tissue‐engineering applications. Nanomedicine and Nanobiotechnology; e1573, 1-22

Cui, W., Liu, Q. Q., Yang, L., Wane, K., Sun, T. F., Ji, Y. H. y Guo, X. D. (2018). Sustained delivery of BMP-2-related peptide from the true bone ceramics/hollow mesoporous silica nanoparticles scaffold for bone tissue regeneration. ACS Biomaterials Science & Engineering, 4, 211–221.

Eivazzadeh-Keihan, R., Chenab, K. K., Taheri-Ledari, R., Mosafer, J., Hashemi, S. M., Mokhtarzadeh, A. y Hamblin, M. R. (2019). Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. Materials Science and Engineering: C, 110267

Erlebacher, E., Filvaroff, E., Ye, J. y Derynck, R. (1998). Osteoblastic responses to TGF-beta during bone remodelling. Mol. Biol. Cell. 9: 1903–1918.

Fan, J., Yu, C., Gao, F., Lei, J., Tian, B., Wang, L., Luo, Q., Tu, B., Zhou, W. y Zhao, D. (2003). Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew. Chem. Int. 42: 3146-3150.

Feng, L., Ward, S., Liu, Y., Lu, Y., Xie, B., Yuan et al. (2006). Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 38: 1310–1315.

Fengyu, Q., Zhu G., Huang, S., Li, S., Sun, J., Zhang, D y Qiu, S. (2006). Controlled release of Captopril by regulating the pore size and morphology of ordered mesoporous silica. Microporous and Mesoporous Materials. 92: 1–9.

Ferreira, G., Faria, J., Gomes, D., Barros, A., Fernandes, R., Soares, A., Takahashi, J. y Barros, E. (2018). Mesoporous silica SBA-16/hydroxyapatite-based composite for ciprofloxacin delivery to bacterial bone infection. Journal of Sol-Gel Science and Technology. Vol. 85 (2), pp 369-381.

García, A., Colilla, M., Izquierdo-Barba, I., y Vallet-Regí, M. (2009). Incorporation of phosphorus into mesostructured silicas: a novel approach to reduce the SiO2 leaching in water. Chem. Mater. 21: 4135–4145.

Gonzalez, G., A. Sagarzazu, T. y Zoltan, J. (2013). Infuence of Microstructure in Drug Release Behavior of Silica Nanocapsules. Journal of Drug Delivery. 803585 1-8.

González, G., Sagarzazu, A., Córdova, A., Gomes, M., Salas, J., Contreras, L., Noris, K., y Lascano, L. (2017). Comparative study of two silica mesoporous materials (SBA-16 and SBA-15) modified with a hydroxyapatite layer for clindamycin controlled delivery. Microporous and Mesoporous Materials. 256, 251-265

Han, P., Wu, C. y Xiao, Y. (2013). The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells Biomater. Sci. 1, 379-392

Heikkilä, T., Salonen, J., Tuura, J., Hamdyb, M., Mulb, G., Kumarc, N., Salmi, T., Murzin, D., Laitinen, L., Kaukonen, A., Hirvonen, J. y Lehto, V. (2007). Mesoporous silica material TUD-1 as a drug delivery system. International Journal of Pharmaceutics. 331:133–138.

Hoffmann, M., Cornelius, J., Morell y M. Fröba. (2006). Silica-based mesoporous organic inorganic hybrid materials. Angew. Chem. Int. 45: 3216-3251.

Huang, D-M., Chung, T-H., Hung, Y., Lu, F., Wu, S-H. y Mou, C-Y. (2008). Internalization of mesoporous silica nanoparticles induces transient but not sufficientosteogenic signals in human mesenchymal stem cells. Toxicol Appl Pharm; 231:208–15.

Hudson, S., Padera, R., Langer, R. y Kohane, D. (2008). The Biocompatibility of Mesoporous Silicates. Biomaterials. 29(30): 4045–4055.

Hutmacher, D.W. (2000). Polymeric Scaffolds in Tissue Engineering Bone and Cartilage. Biomaterials, 21, 2529-2543.

Jafari, S., Derakhshankhah, H., Alaei, L., Fattahi, A., Varnamkhasti, B. S. y Saboury, A. A. (2019). Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomedicine & Pharmacotherapy, 109, 1100–1111.

Kempen, D., Creemers, L., Alblas, J., Lu, L., Verbout, A., Yaszemski, M., y Dhert, W. (2010). Growth Factor Interactions in Bone Regeneration. Tissue Engineering: Part B, 16 (6): 551-566.

Kehr, N. S., Prasetyanto, E. A., Benson, K., Ergun, B., Galstyan, A., y Galla, H. J. (2013). Periodic mesoporous organosilica-based nanocompositehydrogels as three-dimensional scaffolds. Angewandte Chemie-International Edition.52, 1156–1160.

Lee, J., Nam, S., Park, Y., Lee, Y., Seol, Y., Chung, C. y Lee, S. (2002). Enhanced bone formation by controlled growth factor delivery from chitosan-based materials. J Control Release. 78(1–3):187–97.

Leijten, J., Georgi, N., Moreira Teixeira, L., van Blitterswijk, C.A., Post, J.N. y Karperien, M. (2014). Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate. Proc. Natl. Acad. Sci. U. S. A. 111, 13954–13959.

Leijten, J., Chai, Y., Papantoniou, I., Geris, L., Schrooten, J. y Luyten, F. (2015). Cell based advanced therapeutic medicinal products for bone repair: Keep it simple? Advanced Drug Delivery Reviews. 84, 30-34

Lozano, D., Manzano, M., Doadrio, J., Salinas, A., Vallet-Regi, M., Gomez-Barrena, E et al. (2012). Osteostatin-loaded bioceramics stimulate osteoblastic growth and differentiation. Acta Biomaterialia. 6, 797-803.

Luo, Z., Yi, D., Zhang, R., Wang, M., Bai, Y., Zhao, Q., Lyu, Y., Wei, J. y Wei, S. (2015). Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 131 73–82.

Manzano, M., Lamberti, G., Galdi, I. y Vallet-Regí, M. (2011). Anti-Osteoporotic Drug Release from Ordered Mesoporous Bioceramics: Experiments and Modeling. AAPS PharmSciTech.12 (4), 1193-1199.

Manzano, M. y Vallet-Regí, M. (2012). Revisiting bioceramics: Bone regenerative and local drug delivery systems. Solid State Chemistry 40, 17-30.

Martin, K. (2007). The chemistry of silica and its potential health benefits. Journal of Nutrition, Health & Aging. 11(2), 94–98.

Mendes, L., Saska, S., Martines, M. y Marchetto, R. (2013). Nanostructured materials based on mesoporous silica and mesoporous silica/apatite as osteogenic growth peptide carriers. Materials Science and Engineering: C 33, 4427–4434.

Muschler, G., Chizu, N. y Griffith, G. (2004). Engineering Principles of Clinical Cell-Based Tissue Engineering. J Bone Joint Surg Am. 86, 1541-1558.

Nieto, A., Balas, F., Colilla, M., Manzano, M. y Vallet-Regí, M. (2008). Functionalization degree of SBA-15 as key factor to modulate sodium alendronate dosage.116 (1–3): 4–13.

Nieto, A., Areva, S., Wilson, T., Viitala, R. y Vallet-Regí, M. (2009). Cell viability in a wet silica gel. Acta Biomaterialia. 5, 3478-3487.

Nieto, A. (2011). Aplicaciones biomédicas de materiales mesoporosos de sílice y de carbón. Universidad complutense de Madrid: Tesis Doctoral.

Pérez, L., Lalueza, P., Monzon, M., Puertolasc, J., Arruebo, M. y Santamaría, J. (2011). Hollow porous implants filled with mesoporous silica particles as a two-stage antibiotic-eluting device. International Journal of Pharmaceutics. 409, 1–8.

Peters, T. (1996). All About Albumin: Biochemistry, Genetics and Medical Applications. (Academic Press, 1st Ed, 482 pgs) San Diego, USA.

Phan, P., Grzanna, M., Chu, J., Polotsky, A., El-ghannam, A., Van Heerden, D., Hungerford, D. y Frondoza, C. (2003). The effect of silica-containing calcium-phosphate particles on human osteoblasts in vitro. Journal of Biomedical Materials Research, Part A. 67 (3), 1001–1008.

Pollak, M. (2012). The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat. Rev. Cancer. 12, 159–169.

Porter, A., Botelho, C., Lopes, M., Santos, J., Best, S. y Bonfield, W. (2004). Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo. J Biomed Mater Res. 69, 670–9.

Qianjun, H. y Jianlin, S. (2011). Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Mater. Chem., 21, 5845.

Quan, Z., Han, X., Ye, Z., Chenzhong, Y. y Wenjun, C. (2012). Influence of Novel Nano-Mesoporous Bioactive Glass on the Regulation of IGF-II Gene Expression in Osteoblasts. Cell Biochem Biophys. 62,119–123.

Quarto, M. y Longaker, T. (2006). FGF-2 inhibits osteogenesis in mouse adipose tissue-derived stromal cells and sustains their proliferative and osteogenic potential state, Tissue Eng. 12, 1405–1418.

Radu, C., Lai, K., Jeftinija, E., Rowe, S., Jeftinija, V. y Lin. A. (2004). Polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J. Am. Chem. Soc. 126: 13216-13217.

Raisz, L. y Rodan, G. (2003). Pathogenesis of osteoporosis. Endocrinol Metab Clin North Am. 32, 15–24.

Ratner, B., Hoffman, A., Schoen, F. y Lemons, J. (2004). Biomaterials science - An introduction to materials in medicine. (2nd Ed. 879 pgs) Academic Press, segunda edición.

Ren, M., Zhen, H., Jinglai, L., Feng, G. y Ouyang, S. (2015). Ascorbic acid delivered by mesoporous silica nanoparticles induces the differentiation of human embryonic stem cells into cardiomyocytes. Materials Science and Engineering C. 56:348–355. DOI:

Rouquerol, J., Avnir, D., Fairbridge, C., Everett, D., Haynes, J., Pernicone, N., Ramsay, J., Sing, K. y Unger, K. (1994). Recommendations for the characterization of porous solids. Pure & Appl. Chem. 66 (8): 1739-1758.

Shi, X., Wang, Y., Ren, L., Zhao, N., Gong, Y. y Wang, D. (2009). Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Acta Biomaterialia. 5: 1697–1707.

Shi, X., Wang, Y., Varshney, R., Ren, L., Zhang, F. y Wang, D. (2009). In vitro osteogenesis of synovium stem cells induced by controlled release of bisphosphate additives from microspherical mesoporous silica composite. Biomaterials. 30: 3996–4005.

Shin-Hee, J., Eun-Jung, L., Hyoun-Ee, K., Jun-Hyeog, J. y Young-Hag, K. (2011). Silica-chitosan hybrid coating on Ti for controlled release of growth factors. J Mater Sci: Mater Med. 22, 2757–2764.

Shou-Cang, S., Kiong, W., Chiaa, L., Hua, J. y Tan, R. (2011). Physical state and dissolution of ibuprofen formulated by co-spray drying with mesoporous silica: Effect of pore and particle size. International Journal of Pharmaceutics. 410,188–195.

Sims, N y Gooi, J. (2008). Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Seminars in Cell & Developmental Biology. 19 (5), 444–451.

Sousa, K., Souza, E. y Sousa. (2008). Mesoporous silica/apatite nanocomposite: special synthesis route to control local drug delivery. Acta Biomater. 4671–679.

Steven, M. M. y George, J. (2005). Exploring and Engineering the Cell Surface Interface. Science. 310, 1135-1138.

Stewart, S., Bryant, S., Ahn, J. y Hankenson, K. (2015). Bone Regeneration. Translational Regenerative Medicine, 313–333.

Su, J., Cao, L., Yu, B., Song, S., Liu, X., Wang, Z. y Li, M. (2012). Composite scaffolds of mesoporous bioactive glass and polyamide for bone repair. International Journal of Nanomedicine. 7, 2547–2555.

Su, W., Wei, T., Lu, M., Meng, Z., Chen, X., Jing, J. y Fu, T. (2019). Treatment of metastatic lung cancer via inhalation administration of curcumin composite particles based on mesoporous silica. European Journal of Pharmaceutical Sciences, 134, 246-255

Sun, J., Wei, L., Liu, X. et al. (2009). Acta Biomater. 5, 1284.

Tang, Q., Xu, Y., Wu, D. y Sun, Y. (2006). A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine. J. Solid State Chem. 179,1513–1520.

Thielemann, J., Girgsdies, F., Schlögl, R.y Hess, C. (2011). Pore structure and surface area of silica SBA-15: influence of washing and scale-up. J. of Nanotechnol. 2, 110–118.

Ukmar, T. y Planinsek, O. (2010). Ordered mesoporous silicates as matrices for controlled release of drugs. Acta Pharm. 60: 373–385.

Van de Manakker, F., Braeckmans, K., El Morabit, N., De Smedt, S., Van Nostrum, C. y Hennink, W. (2009). Protein-release behavior of self-assembled PEG-betacyclodextrin/PEG-cholesterol hydrogels. Adv. Func. Mater. 19, 2992–3001.

Vega, J., Iyoshia, M., Kima, K., Hozumib, A., Sugimuraa, H. y Takai, O. (2001). Spin casted mesoporous silica coatings for medical applications. Thin Solid Films. 398 –399, 615–620.

Vivero-Escoto, J. (2009). Surface functionalized mesoporous silica nanoparticles for intracellular drug delivery. (Iowa St Univ. PhD thesis, 160 pgs) 10930.

Wang, T., Chai, F., Wang, C., Li, L., Hai-Yan, L., Zang, L., Zhong-Min, S. y Liao, Y. (2011). Fluorescent hollow/rattle-type mesoporous Au@SiO2 nanocapsules for drug delivery and fluorescence imaging of cancer cells. Journal of Colloid and Interface Science. 358, 109–115.

Wang, Y., Zhao, Q. F., Han, N., Bai, L., Li, J., Liu, J., Che, E. X., Hu, L., Zhang, Q., Jiang, T. Y. y Wang, S. L. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed.-Nanotechnol. Biol. Med. 11 (2), 313-327.

Wei, G., Jin, Q., Giannobile, W. y Ma, P. (2007). The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials. 28: 2087–2096.

Williams, D.F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29, 2941-2953

Wu, J., Kusuma, C., Mond, J. y Kokai-Kun, J. (2003). Antimicrob. Agents Chemother. 47, 3407–3414.

Wu, C., Fan, W., Gelinsky, M., Xiao, Y., Chang, J., Friis, T. y Cuniberti, G. (2011). In situ preparation and protein delivery of silicate–alginate composite microspheres with core-shell structure. J. R. Soc. Interface. 8, 1804–1814.

Wozney, J., Rosen, V., Celeste, A.J., Mitsock, L.M., Whitters, M.J., Kriz, R., Hewick, R. y Wang, E. (1988). Novel regulators of bone formation: molecular clones and activities. Science. 242: 1528–1534.

Yachao, J., Zhang, P., Sun, Y., Kang, Q., Xu, J., Zhang, C. y Chai, Y. (2019). Regeneration of large bone defects using mesoporous silica coated magnetic nanoparticles during distraction osteogenesis. Nanomedicine: Nanotechnology, Biology and Medicine, 102040.

Yanagisawa, T., Shimizu, T., Kuroda, K. y Kato, C. (1990). The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials. Bull.Chem.Soc. Jpm. 63 (4): 988-992.

Ying, J., Mehnert, C., Wong, M. y Angew, S. (1999). Chem. Int. 38: 56–77.

Yilgor, P., Hasirci, N. y Hasirci, V. (2009). Sequential BMP-2/BMP-7 delivery from polyester nanocapsules. Journal of Biomedical Materials Research, Part A, 528-536.

Yilgor, P., Tuzlakoglu, K., Reis, R., Hasirci, N. y Hasirci, V. (2009). Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials. 30, 3551–3559.

Yiu, H. y Wright, P. (2005). Mater. Chem. 15, 3690–3700.

Zanjanizadeh, N., Shahbazi, M., Shatalin, V., Nadal, E., Mäkilä, E., Salonen, J., Kemell, M., Correia, A., Hirvonen, J. y Santos, H. (2018). Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. International Journal of Pharmaceutics, 536(1), 241–250.

Zeid, A. (2012). Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5, 2874-2902.

Zhao, D., Feng, J., Qisheng, H., Melosh, N., Fredrickson, G H., Chmelka, B. F. y Stucky, G. D. (1998). Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 279(5350), 548–552.

Zhao, Y., Trewyn, B., Slowing, I. y Lin, V. (2009). Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. J. Am. Chem.Soc. 131: 8398–8400

Artículos más leídos del mismo autor/a