ESTUDIO COMPARATIVO DE LOS MÉTODOS ESPECTROFOTÓMETRICO Y POTENCIOMÉTRICO PARA LA DETERMINACIÓN CUANTITATIVA DE FENOLES TOTALES EN PLANTAS MEDICINALES ECUATORIANAS
Contenido principal del artículo
Resumen
En este estudio, fueron comparados los valores de las concentraciones de fenoles totales en extractos acuosos de plantas medicinales ecuatorianas que fueron obtenidos usando el método espectrofotométrico desarrollado por Folinn y Ciocalteau y por titulación potenciométrica. Por el método potenciométrico se cuantificaron los fenoles totales presentes en cuatro plantas medicinales (Ageratum conyzoides, Cnidoscolus chayamansa, Cynara scolymus y Taraxacum officinale), las cuales fueron seleccionadas por ser representativas de los contenidos alto, medio, intermedio y bajo de fenoles totales de las doce plantas previamente analizadas espectrofotométricamente. Los resultados de la cuantificación de fenoles totales por titulación potenciométrica tuvieron una alta correlación (R2=0,987) con los valores obtenidos por el método espectrofotométrico, a las concentraciones de 0,70 a 24,0 mg/g. El uso de la potenciometría para cuantificar fenoles totales resultó amigable con el ambiente al utilizar concentraciones muy diluidas de reactivos y reemplazar las substancias tóxicas empleadas habitualmente en los métodos espectrofotométricos.
Descargas
Detalles del artículo
- Los autores se comprometen a respetar la información académica de otros autores, y a ceder los derechos de autor a la Revista infoANALÍTICA, para que el artículo pueda ser editado, publicado y distribuido.
- El contenido de los artículos científicos y de las publicaciones que aparecen en la revista es responsabilidad exclusiva de sus autores. La distribución de los artículos publicados en la Revista infoANALÍTICA se realiza bajo una licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
Citas
Blainski, A., Lopes G. & Palazzo de Mello, J. (2013). Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852
Bravo, L. (1998). Poliphenol: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56, 317-333. doi: 10.1111/j.1753-4887.1998.tb01670.x.
De Beer, D., Harbertson, J.F., Kilmartin, P.A., Roginsky, V., Barsukova, T., Adams, D.O., & Waterhouse, A.L. (2004). Phenolics: A comparison of diverse analytical methods. American Journal of Enology and Viticulture, 55, 389-400.
De Leite, K.C.S., Garcia, L.F., Lobón, G.S. & et al. (2018). Antioxidant activity evaluation of dried herbal extracts: an electroanalytical approach. Brazilian Journal of Pharmacognosy, 28, 325-332. https://doi.org/10.1016/j.bjp.2018.04.004.
Duthie, G.G., Duthie, S.J., & Kyle, J.A.M. (2000). Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidants. Nutrition Research Reviews, 13(1),79-106. DOI: 10.1079/095442200108729016.
Elbehery, N.H.A., Amr, A.E.-G.E., Kamel, A.H., Elsayed, E.A. & Hassan, S.S. (2019). Novel potentiometric 2,6-dichlorophenolindo-phenolate (DCPIP) membrane-sased Sensors: Assessment of their Input in the determination of total phenolics and ascorbic acid in beverages. Sensors, 19(9), 2058. https://doi.org/10.3390/s19092058.
Escarpa, A. & González, M.C. (2001) Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Analytica Chimica Acta, 427, 119-127. http://dx.doi.org/10.1016/S0003-2670(00)01188-0.
Folinn, C., & Ciocalteau, V. (1927). Tyrosine and tryptophan determination in proteins. The Journal of the biological Chemistry, 73, 627-650.
Ghaima, K. K., Hashim, N. M., & Ali, S. A. (2013). Anti¬bacterial and antioxidant activities of ethyl acetate extract of nettle (Urtica dioica) and dandelion (Taraxacum officinale). Journal of Applied Pharmaceutical Science, 3, 96-99. doi:10.7324/JAPS.2013.3518
Hoyos, J., Vázquez, M., & Contreras-Calderón, J. (2017). Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: A review. Food Chemistry, 221, 1371- 1381. https://doi.org/10.1016/j.foodchem.2016.11.017
Hudec, J, Ria Burdovaä M., Kobida, L. Komora L., Macho V., Kogan G., Turianica I., & et al. (2007). Antioxidant Capacity Changes and Phenolic Profile of Echinacea purpurea, Nettle (Urtica dioica L.), and Dandelion (Taraxacum officinale) after Application of Polyamine and Phenolic Biosynthesis Regulators. Journal of Agricultural and Food Chemistry, 55(14), 5689-96. doi:10.1021/jf070777c
Huma F, Jaffar M, & Masud K. (1999). A Modified potentiometric method for the estimation of phenol in aqueous systems. Turkish Journal of Chemistry, 23, 415-422.
Liu, J., Yong, H., Yao, X., Hu, H., Yun, D., & Xiao, L. (2019). Recent advances in phenolic–protein conjugates: synthesis, characterization, biological activities and potential applications RSC Advances, 9, 35825-35840. https://doi.org/10.1039/C9RA07808H
Makkar, H. P., Norvsambuu, T., Lkhagvatseren, S., & Becker, K. (2009). Plant secondary metabolites in some medicinal plants of Mongolia used for enhancing ani-mal health and production. Tropicultura, 27, 159-167. doi: 10.3390/genes9060309.
Martínez- Valverde, I., Periago, M., & Ros, G. (2000). Significado nutricional de los compuestos fenólicos de la dieta. Archivos Latinoamericanos de Nutrición, 50(1), 5-18.
Mizzi, L., Chatzitzika, C., Gatt, R., & Valdramidis, V. (2020). HPLC analysis of phenolic compounds and flavonoids with overlapping peaks. Food technology and biotechnology, 589(1), 12-19. https://doi.org/10.17113/ftb.58.01.20.6395.
Mota, F., Queimada, A., Pinho, S., & Macedo. E. (2008). Aqueous solubility of some natural phenolic compounds. Industrial and Engineering Chemistry Research, 47(15), 5182-5189. https://doi.org/10.1021/ie071452o
Nijveldt, R.J., Van Nood, E., Van Hoorn, D.E.C., Boelens, P.G., & Van Norren, K. (2001). Flavonoids: A review of probable mechanisms of action and potential applications. The American Journal of Clinical Nutrition, 74, 418-425. https://doi.org/10.1093/ajcn/74.4.418
Rodríguez-Méndez, M., Apetrei, C., & De Saja, J. (2008). Evaluation of the polyphenolic content of extra virgin olive oils using an array of voltammetric sensors. Electrochimica Acta, 53, 5867-5872. https://doi.org/10.1016/j.electacta.2008.04.006
Salehi, B., Azzini E., Zucca P., Varoni E., Anil Kumar N., Luciana Dini L. & et al. (2020). Plant-derived bioactives and oxidative stress-related disorders: A key trend towards healthy aging and longevity promotion. Applied Science, 10, 947; doi:10.3390/app10030947.
Sengul, M., Yildiz, H., Gungor, N., Cetin, B., Eser, Z., & Ercisli, S. (2009). Total phenolic content, antioxi¬dant and antimicrobial activities of some medicinal plants. Pakistan Journal of Pharmaceutical Sciences, 22, 102-106.
Serrano, J., Puupponen-Pimiä, R., Dauer, A., Aura, A.M., & Saura-Calixto, F. (2009). Tannins: Current knowledge of food sources, intake, bioavailability, and biological effects. Molecular Nutrition & Food Research, 53, 310-329. DOI: 10.1002/mnfr.200900039
Singleton, V.L., Orthofer, R., & Lamuela-Raventós, R.M (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
Sun, Z., Zhang, Y., Xu, X., Wang, M., & Kou L. (2019). Determination of the total phenolic content in wine samples using potentiometric method based on permanganate ion as an indicator. Molecules, 24(18), 3279. https://doi.org/10.3390/molecules24183279.
Velásquez A. (2004). Extracción de taninos presentes en el banano verde. Revista Lasallista de Investigación, 1(2), 17-22.
Wang, J. & Li, R. (1989). Highly stable voltametric measurements of phenolic compounds at poly(3-methylthiophene)-coated glassy carbon electrodes. Analytical Chemistry, 61, 2809-2811. https://doi.org/10.1021/ac00199a025
World Health Organization (WHO) (2011). Quality control methods for medicinal plant materials. WHO Pres. Geneva. p 1-4, 26-31.