Origen probable y transmisión entre especies del SARS-CoV-2
Contenido principal del artículo
Resumen
A finales del año pasado se reportaron casos de pacientes con neumonía atípica en Wuhan, Provincia de Hubei, China. La mayoría de pacientes iniciales trabajaban, vivían o eran consumidores de productos del mercado mayorista de mariscos lo que sugirió un posible contagio de un patógeno de origen animal al ser humano. Posteriormente, se determinó que el responsable fue un coronavirus, que se llamó SARS-CoV-2, cuya rápida propagación produjo la pandemia de la enfermedad coronavirus disease 19 (COVID-19). La enfermedad es actualmente motivo de preocupación e intensa investigación a nivel mundial. Se han postulado teorías sobre el origen del coronavirus siendo la más aceptada que el virus proviene del pangolín malayo. Con la finalidad de reforzar esta teoría, en la presente investigación, a partir de secuencias nucleotídicas de dominio público, se seleccionaron fragmentos de secuencias nucleotídicas que codifican para la espícula glicoprotéica superficial de coronavirus en algunos organismos hospederos infectados por diferentes cepas de coronavirus incluyendo el SARS-CoV-2. De la filogenia y análisis de secuencias de amino ácidos de la espícula glicoprotéica del coronavirus se encontró posibles eventos de transmisión entre especies del virus responsable de la enfermedad incluyendo el ser humano.
Descargas
Detalles del artículo
- Los autores se comprometen a respetar la información académica de otros autores, y a ceder los derechos de autor a la Revista infoANALÍTICA, para que el artículo pueda ser editado, publicado y distribuido.
- El contenido de los artículos científicos y de las publicaciones que aparecen en la revista es responsabilidad exclusiva de sus autores. La distribución de los artículos publicados en la Revista infoANALÍTICA se realiza bajo una licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
Citas
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Belouzard, S., Millet, J. K., Licitra, B. N., & Whittaker, G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4(6), 1011–1033. https://doi.org/10.3390/v4061011
Centro para el Control y la Prevención de Enfermedades de Estados Unidos. (2013). CDC SARS Response Timeline. Recuperado de: https://www.cdc.gov/about/history/sars/timeline.htm
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
Crooks, G. E., Hon, G., Chandonia, J. M., & Brenner, S. E. (2004). WebLogo: a sequence logo generator. Genome research, 14(6), 1188–1190. https://doi.org/10.1101/gr.849004
Dewitte S. N. (2010). Age Patterns of Mortality During the Black Death in London, A.D. 1349-1350. Journal of archaeological science, 37(12), 3394–3400. https://doi.org/10.1016/j.jas.2010.08.006
Gardner, L. Mapping 2019-nCoV (2020). Recuperado de: https://coronavirus.jhu.edu/map.html (accedido el 04/04/2020).
Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic acids research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563
Geoghegan, J. L., & Holmes, E. C. (2018). “The phylogenomics of evolving virus virulence”. Nature reviews. Genetics, 19(12), p. 756–769. https://doi.org/10.1038/s41576-018-0055-5
Gorbalenya, A., Baker, S., Baric, R., de Groot, R., Drosten, C., … Ziebuhr, J. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol, 5, 536–544. https://doi.org/10.1038/s41564-020-0695-z
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
GHO (2020). Global Health Observatory (CH), World Health Organization HIV/AIDS (Recuperado de: https://www.who.int/gho/hiv/en/ (accedido el 22/03/2020).
Hu, B., Zeng, L. P., Yang, X. L., Ge, X. Y., Zhang, W., Li, B., Xie, J. Z., Shen, X. R., Zhang, Y. Z., Wang, N., Luo, D. S., Zheng, X. S., Wang, M. N., Daszak, P., Wang, L. F., Cui, J., & Shi, Z. L. (2017). Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS pathogens, 13(11), e1006698. https://doi.org/10.1371/journal.ppat.1006698
Hu, D., Zhu, C., Ai, L., He, T., Wang, Y., Ye, F., Yang, L., Ding, C., Zhu, X., Lv, R., Zhu, J., Hassan, B., Feng, Y., Tan, W., & Wang, C. (2018). “Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats”. Emerging microbes & infections, 7(1), 154. https://doi.org/10.1038/s41426-018-0155-5
Ji, W., Wang, W., Zhao, X., Zai, J., & Li, X. (2020). Cross-species transmission of the newly identified coronavirus 2019-nCoV. Journal of medical virology, 92(4), 433–440. https://doi.org/10.1002/jmv.25682
Kan, B., Wang, M., Jing, H., Xu, H., Jiang, X., Yan, M., Liang, W., Zheng, H., Wan, K., Liu, Q., Cui, B., Xu, Y., Zhang, E., Wang, H., Ye, J., Li, G., Li, M., Cui, Z., Qi, X., Chen, K., … Xu, J. (2005). “Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms”. Journal of virology, 79(18), p. 11892–11900. https://doi.org/10.1128/JVI.79.18.11892-11900.2005
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). “MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms”. Molecular biology and evolution, 35(6), pp. 1547–1549. https://doi.org/10.1093/molbev/msy096
Lai, M., y Holmes, K. (2001). “Coronaviridae: the viruses and their replication”. En: Knipe, D. M. y Howley, P. M. (Eds.). Fields Virology (p. 1163–1185). .Philadelphia, EUA: Lippincott Williams & Wilkins.
Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H., & Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450–454. https://doi.org/10.1038/nature02145
Liu, P., Chen, W., y Chen, J. P. (2019). “Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan pangolin (Manis javanica)”. Viruses, 11(11), 979. https://doi.org/10.3390/v11110979
Lu, H., Stratton, C. W., & Tang, Y. W. (2020). Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. Journal of medical virology, 92(4), 401–402. https://doi.org/10.1002/jmv.25678
Luo, Y., Li, B., Jiang, R. D., Hu, B. J., Luo, D. S., Zhu, G. J., Hu, B., Liu, H. Z., Zhang, Y. Z., Yang, X. L., & Shi, Z. L. (2018). Longitudinal Surveillance of Betacoronaviruses in Fruit Bats in Yunnan Province, China During 2009-2016. Virologica Sinica, 33(1), 87–95. https://doi.org/10.1007/s12250-018-0017-2
Martini, M., Gazzaniga, V., Bragazzi, N. L., & Barberis, I. (2019). The Spanish Influenza Pandemic: a lesson from history 100 years after 1918. Journal of preventive medicine and hygiene, 60(1), E64–E67. https://doi.org/10.15167/2421-4248/jpmh2019.60.1.1205
Mena, I., Nelson, M. I., Quezada-Monroy, F., Dutta, J., Cortes-Fernández, R., Lara-Puente, J. H., Castro-Peralta, F., Cunha, L. F., Trovão, N. S., Lozano-Dubernard, B., Rambaut, A., van Bakel, H., & García-Sastre, A. (2016). Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. eLife, 5, e16777. https://doi.org/10.7554/eLife.16777
Mordechai, L., Eisenberg, M., Newfield, T. P., Izdebski, A., Kay, J. E., & Poinar, H. (2019). The Justinianic Plague: An inconsequential pandemic?. Proceedings of the National Academy of Sciences of the United States of America, 116(51), 25546–25554. https://doi.org/10.1073/pnas.1903797116
Monecke, S., Monecke, H., & Monecke, J. (2009). Modelling the black death. A historical case study and implications for the epidemiology of bubonic plague. International journal of medical microbiology, 299(8), 582–593. https://doi.org/10.1016/j.ijmm.2009.05.003
NCBI Resource Coordinators (2018). “Database resources of the National Center for Biotechnology Information”. Nucleic acids research, 46(D1), D8–D13. https://doi.org/10.1093/nar/gkx1095
NCBI. (1988). National Library of Medicine (US), National Center for Biotechnology Information Recuperado de: https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2 (accedido el 27/02/2020).
Neuman, B. W., Adair, B. D., Yoshioka, C., Quispe, J. D., Orca, G., Kuhn, P., Milligan, R. A., Yeager, M., & Buchmeier, M. J. (2006). Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. Journal of virology, 80(16), p. 7918–7928. https://doi.org/10.1128/JVI.00645-06
Neher, R. A., Dyrdak, R., Druelle, V., Hodcroft, E. B., & Albert, J. (2020). Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss medical weekly, 150, w20224. https://doi.org/10.4414/smw.2020.20224
OPS. (2015). Organización Panamericana de la Salud Recuperado de: https://www.paho.org/hq/index.php?option=com_content&view=article&id=10562:2015-principios-generales-de-higiene-de-los-alimentos-del-codex&Itemid=41271&lang=es (accedido el 23/03/2020).
Pickett, B. E., Sadat, E. L., Zhang, Y., Noronha, J. M., Squires, R. B., Hunt, V., Liu, M., Kumar, S., Zaremba, S., Gu, Z., Zhou, L., Larson, C. N., Dietrich, J., Klem, E. B., & Scheuermann, R. H. (2012). “ViPR: an open bioinformatics database and analysis resource for virology research”. Nucleic acids research, 40, D593–D598. https://doi.org/10.1093/nar/gkr859
Plowright, R. K., Parrish, C. R., McCallum, H., Hudson, P. J., Ko, A. I., Graham, A. L., & Lloyd-Smith, J. O. (2017). Pathways to zoonotic spillover. Nature reviews. Microbiology, 15(8), 502–510. https://doi.org/10.1038/nrmicro.2017.45
Sabbatani, S., & Fiorino, S. (2009). La peste antonina e il declino dell'Impero Romano. Ruolo della guerra partica e della guerra marcomannica tra il 164 e il 182 d.c. nella diffusione del contagio [The Antonine Plague and the decline of the Roman Empire]. Le infezioni in medicina, 17(4), 261–275
Saunders-Hastings, P. R., & Krewski, D. (2016). Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission. Pathogens, 5(4), 66. https://doi.org/10.3390/pathogens5040066
Song, W., Gui, M., Wang, X., & Xiang, Y. (2018). Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS pathogens, 14(8), e1007236. https://doi.org/10.1371/journal.ppat.1007236
Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I. V., Holmes, E. C., & Tong, S. (2017). Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History. Journal of virology, 91(5), e01953-16. https://doi.org/10.1128/JVI.01953-16
Vijayanand, P., Wilkins, E., & Woodhead, M. (2004). Severe acute respiratory syndrome (SARS): a review. Clinical medicine, 4(2), 152–160. https://doi.org/10.7861/clinmedicine.4-2-152
Wang, M., Yan, M., Xu, H., Liang, W., Kan, B., Zheng, B., Chen, H., Zheng, H., Xu, Y., Zhang, E., Wang, H., Ye, J., Li, G., Li, M., Cui, Z., Liu, Y. F., Guo, R. T., Liu, X. N., Zhan, L. H., Zhou, D. H., … Xu, J. (2005). SARS-CoV infection in a restaurant from palm civet. Emerging infectious diseases, 11(12), 1860–1865. https://doi.org/10.3201/eid1112.041293
WHO (2020). World Health Organization (CH), Coronavirus disease (COVID-19) outbreak situation Dashboard Recuperado de: https://experience.arcgis.com/experience/685d0ace521648f8a5beeeee1b9125cd (accedido el 04/04/2020).
Worobey, M., Watts, T. D., McKay, R. A., Suchard, M. A., Granade, T., Teuwen, D. E., Koblin, B. A., Heneine, W., Lemey, P., & Jaffe, H. W. (2016). 1970s and 'Patient 0' HIV-1 genomes illuminate early HIV/AIDS history in North America. Nature, 539(7627), 98–101. https://doi.org/10.1038/nature19827
Woo, P. C., Lau, S. K., Lam, C. S., Lau, C. C., Tsang, A. K., Lau, J. H., Bai, R., Teng, J. L., Tsang, C. C., Wang, M., Zheng, B. J., Chan, K. H., & Yuen, K. Y. (2012). Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. Journal of virology, 86(7), 3995–4008. https://doi.org/10.1128/JVI.06540-11
Wu, Z., & McGoogan, J. M. (2020). Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA, 10.1001/jama.2020.2648. Advance online publication. https://doi.org/10.1001/jama.2020.2648
Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., Zheng, X. S., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7