Probable origin and cross-species transmission of SARS-CoV-2

Main Article Content

Johanna Alvarado-Ortiz
Lorena Meneses Olmedo
Fabio Idrovo-Espín

Abstract

At the end of last year, were reported cases of patients with atypical pneumonia in Wuhan, Hubei Province, China. Most of the initial patients worked, lived or were consumers of products from the wholesale seafood market, which suggested a possible transmission of a pathogen of animal origin to humans. Later, it was determined that the culprit was a coronavirus, named SARS-CoV-2, whose rapid spread caused the pandemic of coronavirus disease 19 (COVID-19). The disease is currently a cause for concern and intense research worldwide. Theories on the origin of the coronavirus have been postulated, being the most widely accepted that the virus comes from the Malay pangolin. With the intention of reinforce this theory, in this research, from nucleotide sequences in the public domain, were selected Fragments of nucleotide sequences encoding the coronavirus surface spike glycoprotein from some host organisms infected by different coronavirus strains including SARS-CoV-2. From phylogeny and acid amino acid sequence analysis were found possible cross-species transmission of the virus responsible of the disease including humans.

Downloads

Download data is not yet available.

Article Details

Section
Cientific papers

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Belouzard, S., Millet, J. K., Licitra, B. N., & Whittaker, G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4(6), 1011–1033. https://doi.org/10.3390/v4061011

Centro para el Control y la Prevención de Enfermedades de Estados Unidos. (2013). CDC SARS Response Timeline. Recuperado de: https://www.cdc.gov/about/history/sars/timeline.htm

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7

Crooks, G. E., Hon, G., Chandonia, J. M., & Brenner, S. E. (2004). WebLogo: a sequence logo generator. Genome research, 14(6), 1188–1190. https://doi.org/10.1101/gr.849004

Dewitte S. N. (2010). Age Patterns of Mortality During the Black Death in London, A.D. 1349-1350. Journal of archaeological science, 37(12), 3394–3400. https://doi.org/10.1016/j.jas.2010.08.006

Gardner, L. Mapping 2019-nCoV (2020). Recuperado de: https://coronavirus.jhu.edu/map.html (accedido el 04/04/2020).

Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic acids research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563

Geoghegan, J. L., & Holmes, E. C. (2018). “The phylogenomics of evolving virus virulence”. Nature reviews. Genetics, 19(12), p. 756–769. https://doi.org/10.1038/s41576-018-0055-5

Gorbalenya, A., Baker, S., Baric, R., de Groot, R., Drosten, C., … Ziebuhr, J. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol, 5, 536–544. https://doi.org/10.1038/s41564-020-0695-z

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5

GHO (2020). Global Health Observatory (CH), World Health Organization HIV/AIDS (Recuperado de: https://www.who.int/gho/hiv/en/ (accedido el 22/03/2020).

Hu, B., Zeng, L. P., Yang, X. L., Ge, X. Y., Zhang, W., Li, B., Xie, J. Z., Shen, X. R., Zhang, Y. Z., Wang, N., Luo, D. S., Zheng, X. S., Wang, M. N., Daszak, P., Wang, L. F., Cui, J., & Shi, Z. L. (2017). Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS pathogens, 13(11), e1006698. https://doi.org/10.1371/journal.ppat.1006698

Hu, D., Zhu, C., Ai, L., He, T., Wang, Y., Ye, F., Yang, L., Ding, C., Zhu, X., Lv, R., Zhu, J., Hassan, B., Feng, Y., Tan, W., & Wang, C. (2018). “Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats”. Emerging microbes & infections, 7(1), 154. https://doi.org/10.1038/s41426-018-0155-5

Ji, W., Wang, W., Zhao, X., Zai, J., & Li, X. (2020). Cross-species transmission of the newly identified coronavirus 2019-nCoV. Journal of medical virology, 92(4), 433–440. https://doi.org/10.1002/jmv.25682

Kan, B., Wang, M., Jing, H., Xu, H., Jiang, X., Yan, M., Liang, W., Zheng, H., Wan, K., Liu, Q., Cui, B., Xu, Y., Zhang, E., Wang, H., Ye, J., Li, G., Li, M., Cui, Z., Qi, X., Chen, K., … Xu, J. (2005). “Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms”. Journal of virology, 79(18), p. 11892–11900. https://doi.org/10.1128/JVI.79.18.11892-11900.2005

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). “MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms”. Molecular biology and evolution, 35(6), pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

Lai, M., y Holmes, K. (2001). “Coronaviridae: the viruses and their replication”. En: Knipe, D. M. y Howley, P. M. (Eds.). Fields Virology (p. 1163–1185). .Philadelphia, EUA: Lippincott Williams & Wilkins.

Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H., & Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450–454. https://doi.org/10.1038/nature02145

Liu, P., Chen, W., y Chen, J. P. (2019). “Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan pangolin (Manis javanica)”. Viruses, 11(11), 979. https://doi.org/10.3390/v11110979

Lu, H., Stratton, C. W., & Tang, Y. W. (2020). Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. Journal of medical virology, 92(4), 401–402. https://doi.org/10.1002/jmv.25678

Luo, Y., Li, B., Jiang, R. D., Hu, B. J., Luo, D. S., Zhu, G. J., Hu, B., Liu, H. Z., Zhang, Y. Z., Yang, X. L., & Shi, Z. L. (2018). Longitudinal Surveillance of Betacoronaviruses in Fruit Bats in Yunnan Province, China During 2009-2016. Virologica Sinica, 33(1), 87–95. https://doi.org/10.1007/s12250-018-0017-2

Martini, M., Gazzaniga, V., Bragazzi, N. L., & Barberis, I. (2019). The Spanish Influenza Pandemic: a lesson from history 100 years after 1918. Journal of preventive medicine and hygiene, 60(1), E64–E67. https://doi.org/10.15167/2421-4248/jpmh2019.60.1.1205

Mena, I., Nelson, M. I., Quezada-Monroy, F., Dutta, J., Cortes-Fernández, R., Lara-Puente, J. H., Castro-Peralta, F., Cunha, L. F., Trovão, N. S., Lozano-Dubernard, B., Rambaut, A., van Bakel, H., & García-Sastre, A. (2016). Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. eLife, 5, e16777. https://doi.org/10.7554/eLife.16777

Mordechai, L., Eisenberg, M., Newfield, T. P., Izdebski, A., Kay, J. E., & Poinar, H. (2019). The Justinianic Plague: An inconsequential pandemic?. Proceedings of the National Academy of Sciences of the United States of America, 116(51), 25546–25554. https://doi.org/10.1073/pnas.1903797116

Monecke, S., Monecke, H., & Monecke, J. (2009). Modelling the black death. A historical case study and implications for the epidemiology of bubonic plague. International journal of medical microbiology, 299(8), 582–593. https://doi.org/10.1016/j.ijmm.2009.05.003

NCBI Resource Coordinators (2018). “Database resources of the National Center for Biotechnology Information”. Nucleic acids research, 46(D1), D8–D13. https://doi.org/10.1093/nar/gkx1095

NCBI. (1988). National Library of Medicine (US), National Center for Biotechnology Information Recuperado de: https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2 (accedido el 27/02/2020).

Neuman, B. W., Adair, B. D., Yoshioka, C., Quispe, J. D., Orca, G., Kuhn, P., Milligan, R. A., Yeager, M., & Buchmeier, M. J. (2006). Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. Journal of virology, 80(16), p. 7918–7928. https://doi.org/10.1128/JVI.00645-06

Neher, R. A., Dyrdak, R., Druelle, V., Hodcroft, E. B., & Albert, J. (2020). Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss medical weekly, 150, w20224. https://doi.org/10.4414/smw.2020.20224

OPS. (2015). Organización Panamericana de la Salud Recuperado de: https://www.paho.org/hq/index.php?option=com_content&view=article&id=10562:2015-principios-generales-de-higiene-de-los-alimentos-del-codex&Itemid=41271&lang=es (accedido el 23/03/2020).

Pickett, B. E., Sadat, E. L., Zhang, Y., Noronha, J. M., Squires, R. B., Hunt, V., Liu, M., Kumar, S., Zaremba, S., Gu, Z., Zhou, L., Larson, C. N., Dietrich, J., Klem, E. B., & Scheuermann, R. H. (2012). “ViPR: an open bioinformatics database and analysis resource for virology research”. Nucleic acids research, 40, D593–D598. https://doi.org/10.1093/nar/gkr859

Plowright, R. K., Parrish, C. R., McCallum, H., Hudson, P. J., Ko, A. I., Graham, A. L., & Lloyd-Smith, J. O. (2017). Pathways to zoonotic spillover. Nature reviews. Microbiology, 15(8), 502–510. https://doi.org/10.1038/nrmicro.2017.45

Sabbatani, S., & Fiorino, S. (2009). La peste antonina e il declino dell'Impero Romano. Ruolo della guerra partica e della guerra marcomannica tra il 164 e il 182 d.c. nella diffusione del contagio [The Antonine Plague and the decline of the Roman Empire]. Le infezioni in medicina, 17(4), 261–275

Saunders-Hastings, P. R., & Krewski, D. (2016). Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission. Pathogens, 5(4), 66. https://doi.org/10.3390/pathogens5040066

Song, W., Gui, M., Wang, X., & Xiang, Y. (2018). Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS pathogens, 14(8), e1007236. https://doi.org/10.1371/journal.ppat.1007236

Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I. V., Holmes, E. C., & Tong, S. (2017). Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History. Journal of virology, 91(5), e01953-16. https://doi.org/10.1128/JVI.01953-16

Vijayanand, P., Wilkins, E., & Woodhead, M. (2004). Severe acute respiratory syndrome (SARS): a review. Clinical medicine, 4(2), 152–160. https://doi.org/10.7861/clinmedicine.4-2-152

Wang, M., Yan, M., Xu, H., Liang, W., Kan, B., Zheng, B., Chen, H., Zheng, H., Xu, Y., Zhang, E., Wang, H., Ye, J., Li, G., Li, M., Cui, Z., Liu, Y. F., Guo, R. T., Liu, X. N., Zhan, L. H., Zhou, D. H., … Xu, J. (2005). SARS-CoV infection in a restaurant from palm civet. Emerging infectious diseases, 11(12), 1860–1865. https://doi.org/10.3201/eid1112.041293

WHO (2020). World Health Organization (CH), Coronavirus disease (COVID-19) outbreak situation Dashboard Recuperado de: https://experience.arcgis.com/experience/685d0ace521648f8a5beeeee1b9125cd (accedido el 04/04/2020).

Worobey, M., Watts, T. D., McKay, R. A., Suchard, M. A., Granade, T., Teuwen, D. E., Koblin, B. A., Heneine, W., Lemey, P., & Jaffe, H. W. (2016). 1970s and 'Patient 0' HIV-1 genomes illuminate early HIV/AIDS history in North America. Nature, 539(7627), 98–101. https://doi.org/10.1038/nature19827

Woo, P. C., Lau, S. K., Lam, C. S., Lau, C. C., Tsang, A. K., Lau, J. H., Bai, R., Teng, J. L., Tsang, C. C., Wang, M., Zheng, B. J., Chan, K. H., & Yuen, K. Y. (2012). Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. Journal of virology, 86(7), 3995–4008. https://doi.org/10.1128/JVI.06540-11

Wu, Z., & McGoogan, J. M. (2020). Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA, 10.1001/jama.2020.2648. Advance online publication. https://doi.org/10.1001/jama.2020.2648

Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., Zheng, X. S., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7