ELUCIDACIÓN DE LA FÓRMULA ESTEQUIOMÉTRICA DE NANOHIDROTALCITAS DE Mg Y Ni SINTETIZADAS POR EL MÉTODO DE COPRECIPITACIÓN

Contenido principal del artículo

Augusto Rodríguez
https://orcid.org/0000-0002-2370-5711
Lenys Fernández
https://orcid.org/0000-0001-6720-6343
José Domínguez
Gema González
https://orcid.org/0000-0003-4526-2429
Omar Martínez
https://orcid.org/0000-0002-5148-7563
Patricio Espinoza- Montero
https://orcid.org/0000-0003-0592-8652

Resumen

Los hidróxidos dobles laminares (LDH, por sus siglas en inglés), también denominados como Hidrotalcitas (HTs), son una clase de materiales arcillosos bidimensionales conocidos por su estructura laminar única, composición versátil y propiedades de intercambio iónico. En este trabajo se reporta la determinación de la relación estequiométrica de arcillas tipo HTs sintetizadas en el laboratorio por el método de co-precipitación. El contenido de metales di y tri-valente que conforman las estructuras de las arcillas fue cuantificado por espectroscopia de absorción atómica por llama. Se sintetizaron dos tipos de HTs, Ni (HT-Ni) y Mg (HT-Mg); donde de acuerdo con los cálculos realizados la formula estequiométrica para la primera arcilla es Ni0,82Al0,18(OH)2(NO3)0,18 y Mg0,80Al0,20(OH)2(NO3)0,20 para la segunda, resultados que concuerdan perfectamente con la literatura. Las arcillas sintetizadas fueron caracterizadas por difracción de rayos X, espectroscopia FT-IR y microscopia electrónica de barrido. Los patrones de difracción de rayos X confirmaron la formación de HTs de tamaño de partícula nanométrico, donde la HT-Mg sintetizada posee mejores propiedades cristalinas.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Sección
Artículos Científicos

Citas

Bahramian, A. (2020). The effect of thermal and non-thermal routes on treatment of the Mg–Al layered double hydroxide catalyst dispersed by titania nanoparticles in products distribution arising from poly (ethylene terephthalate) degradation. Polymer Degradation and Stability, 179, 109243. https://doi.org/10.1016/j.polymdegradstab.2020.109243

Balsamo, N., Mendieta, S., Oliva, M., Eimer, G., Crivello, M. (2012). Synthesis and characterization of metal mixed oxides from Layered Double Hydroxides. Procedia Materials Science, 1, 506-513. https://doi.org/10.1016/j.mspro.2012.06.068

Britto, S., Kamath, P.V. (2014). Synthesis, structure refinement and chromate sorption characteristics of an Al-rich bayerite-based layered double hydroxide. Journal of Solid State Chemistry, 215, 206-210. https://doi.org/10.1016/j.jssc.2014.02.031

Chaillot, D., Bennici, S., Brendlé, J. (2020). Layered double hydroxides and LDH-derived materials in chosen environmental applications: a review. Environmental Science and Pollution Research International, 28, 24375–24405 https://doi.org/10.1007/s11356-020-08498-6

Cocheci, L., Barvinschi, P., Pode, R., Popovici, E., Seftel, E.M. (2010). Structural Characterization of Some Mg/Zn-Al Type Hydrotalcites Prepared for Chromate Sorption from Wastewater. Chemical Bulletin of “Politehnica” University of Timisoara, ROMANIA Series of Chemistry and Environmental Engineering, 55(69), 40-45.

Dahdah, E., Estephane, J., Haydar, R., Youssef, Y., El Khoury, B., Gennequin, C., Aboukaïs, A., Abi-Aad, E., Aouad. S. (2020). Biodiesel production from refined sunflower oil over Ca–Mg–Al catalysts: Effect of the composition and the thermal treatment. Renewable Energy, 146, 1242-1248. https://doi.org/10.1016/j.renene.2019.06.171

Edañol, Y.D.G., Poblador, J.A.O., Talusan, T. J. E., Payawan L. M. (2020). Co-precipitation synthesis of Mg-Al-CO3 layered double hydroxides and its adsorption kinetics with phosphate (V) ions. Materials Today: Proceedings, 33(4), 1809-1813. https://doi.org/10.1016/j.matpr.2020.05.059

Fernández, L., Borrás, C., Carrero, H. (2006). Electrochemical behavior of phenol in alkaline media at hydrotalcite-like clay/ anionic surfactants/ glassy carbon modified electrode. Electrochimica Acta, 52, 872-884. https://doi.org/10.1016/j.electacta.2006.06.021

Ferreira, O.P., Alves, O. L., Gouveia, D. X., Souza Filho, A.G., de Paiva, J. A., Mendes Filho, J. (2004). Thermal decomposition and structural reconstruction effect on Mg–Fe-based hydrotalcite compounds. Journal of Solid State Chemistry, 177(9), 3058-3069. https://doi.org/10.1016/j.jssc.2004.04.030

Forano, C., Costantino, U., Prévot, V., Gueho, C.T. (2013). Layered Double Hydroxides (LDH). Developments in Clay Science, 5, 745-782. https://doi.org/10.1016/B978-0-08-098258-8.00025-0

Gevers, B.R., Naseem, S., Leuteritz, A., Labuschagné, F.J. (2019). Comparison of nano-structured transition metal modified tri-metal MgMAl–LDHs (M= Fe, Zn, Cu, Ni, Co) prepared using co-precipitation. RSC advances, 9(48), 28262-28275. https://doi.org/10.1039/C9RA05452A

Hawthorne, F.C., Cooper M.A. (2013). The crystal structure of chalcoalumite: mechanisms of Jahn-Teller-driven distortion in [6] Cu2+-containing oxysalts. Mineralogical Magazine, 77(7), 2901-2912. https://doi.org/10.1180/minmag.2013.077.7.02

Hu, Y., Pan, C., Zheng, X., Liu, S., Peng, X. (2021). Synthesis of NiSiO@ NiAlFe by Hydrothermal method and removal of Cs+ in water. IOP Conference Series: Earth and Environmental Science, 631(1), 012008. http://dx.doi.org/10.1088/1755-1315/631/1/012008

Iyi, N., Matsumoto, T., Kaneko, Y., Kitamura, K. (2004). Deintercalation of Carbonate Ions from a Hydrotalcite-Like Compound: Enhanced Decarbonation Using Acid-Salt Mixed Solution. Chemistry of Materials, 16(15), 2926-2932. https://doi.org/10.1021/cm049579g

Jeung, D.G., Kim, T.H., Oh, J.M. (2020). Homogeneous Incorporation of Gallium into Layered Double Hydroxide Lattice for Potential Radiodiagnostics: Proof-of-Concept. Nanomaterials, 11(1), 44.

Kannan, S., Rives, V., Knözinger, H. (2004). High-temperature transformations of Cu-rich hydrotalcites. Journal of Solid State Chemistry, 177(1), 319-331. https://doi.org/10.3390/nano11010044

Kannan, S., Velu, S., Ramkumar, V., Swamy, C.S. (1995). Synthesis and physicochemical properties of cobalt aluminium hydrotalcites. Journal of Materials Science, 30, 1462-1468. https://doi.org/10.1007/BF00375249

Li, S., Shi, Y., Yang, Y., Zheng, Y., Cai, N. (2013). High-performance CO2 adsorbent from interlayer potassium-promoted stearate-pillared hydrotalcite precursors. Energy & Fuels, 27(9), 5352-5358. https://doi.org/10.1021/ef400914r

Li, W., Jiang, Y., Yang, M., Qu, M., Li, Y., Shen, W., He, R., Li, M. (2021). Controlled synthesis of hierarchical hollow CoLDH nanocages electrocatalysts for oxygen evolution reaction. Chemical Physics, 541, 111011. https://doi.org/10.1016/j.chemphys.2020.111011

Liu, B., Zhang, M., Wang, Y., Chen, Z., Yan, K. (2021). Facile synthesis of defect-rich ultrathin NiCo-LDHs, NiMn-LDHs and NiCoMn-LDHs nanosheets on Ni foam for enhanced oxygen evolution reaction performance. Journal of Alloys and Compounds, 852, 156949. https://doi.org/10.1016/j.jallcom.2020.156949

Manivannan, R., Karthikeyan, C. (2013). Synthesis of Biodiesel from Neem Oil Using Mg-Al Nano Hydrotalcite. Advanced Materials Research, 678, 268-272. https://doi.org/10.4028/www.scientific.net/AMR.678.268

Martínez, D., Carvajal, G. (2012). Hidróxidos Dobles laminares: arcillas sintéticas con aplicaciones en nanotecnología. Avances en Química, 7(1), 87-99.

Mishra, G., Dash, B., Pandey, S. (2018). Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Applied Clay Science, 153, 172-186. https://doi.org/10.1016/j.clay.2017.12.021

Misra, C., Perrotta, A.J. (1992). COMPOSITION AND PROPERTIES OF SYNTHETIC HYDROTALCITES. Clays and Clay Minerals. 40(2), 145-150. https://doi.org/10.1346/CCMN.1992.0400202

Miyata, S. (1983). Anion- Exchange Properties of Hydrotalcite Like Compounds. Clays and Clay minerals, 31(4), 305-311. https://doi.org/10.1346/CCMN.1983.0310409

Pan, S., Li, B., Yu, J., Zhao, L., Zhang, Y. (2021). Composition controllable fabrication of ultrathin 2D CoMn layered double hydroxides for highly efficient electrocatalytic oxygen evolution. Applied Surface Science, 539, 148305. https://doi.org/10.1016/j.apsusc.2020.148305

Pérez, A.G., Paredes-Carrera, S.P., Martínez-Gutiérrez, H., Sánchez-Ochoa, J.C., Pérez-Gutiérrez, R.M., Cayetano-Castro, N. (2020). Effect of combined microwave-ultrasound irradiation in the structure and morphology of hidrotalcite like compounds Al/Mg-CH3COO and its evaluation in the sorption of a reactive dye. Revista Mexicana de Ingeniería Química, 19(1), 363-375. https://doi.org/10.24275/rmiq/Mat567

Pizzoferrato, R., Richetta, M. (2020). Layered Double Hydroxides (LDHs). Crystals, 10(12), 1121.

Rawski, R.I., Sanecki, P.T., Kijowska, K.M., Skital, P. M., Saletnik, D.E. (2016). Regression Analysis in Analytical Chemistry. Determination and Validation of Linear and Quadratic Regression Dependencies. South African Journal of Chemistry, 69,166–173. http://dx.doi.org/10.17159/0379-4350/2016/v69a20

Rodríguez, L.C., Campana, A.M.G., Sendra, J.M.B. (1996). Statistical estimation of linear calibration range. Analytical Letters, 29(7), 1231–1239. https://doi.org/10.1080/00032719608001471

Rybka, K., Matusik, J., Kuligiewicz, A., Leiviskä, T., Cempura, G. (2021). Surface chemistry and structure evaluation of Mg/Al and Mg/Fe LDH derived from magnesite and dolomite in comparison to LDH obtained from chemicals. Applied Surface Science, 538, 147923. https://doi.org/10.1016/j.apsusc.2020.147923

Shekoohi, K., Hosseini, F.S., Haghighi, A. H., Sahrayian, A. (2017). Synthesis of some Mg/Co-Al type nano hydrotalcites and characterization. MethodsX, 4, 86-94. https://doi.org/10.1016/j.mex.2017.01.003

Solovov, V.A., Nikolenko, N.V., Kovalenko, V.L., Kotok, V.A., Burkov, A.А., Kondrat’ev, D.A., Chernovа, O.V., Zhukovin, S.V. (2018). Synthesis of Ni (II)-Ti (IV) layered double hydroxides using coprecipitation at high supersaturation method. ARPN Journal of Engineering and Applied Sciences, 13(24), 9652-9656.

Stamate, A.E., Pavel, O.D., Zavoianu, R., Marcu, I.C. (2020). Highlights on the Catalytic Properties of Polyoxometalate-Intercalated Layered Double Hydroxides: A Review. Catalysts, 10(1), 57. https://doi.org/10.3390/catal10010057

Wen, N., Su, Y., Deng, W., Zhou, H., Zhao, B. (2021). Selective catalytic reduction of NO with C3H6 over CuFe-containing catalysts derived from layered double hydroxides. Fuel, 283, 119296. https://doi.org/10.1016/j.fuel.2020.119296

Wiyantoko, B., Kurniawati, P., Purbaningtias, T.E., Fatimah, I. (2015). Synthesis and Characterization of Hydrotalcite at Different Mg/Al Molar Ratios. Procedia Chemistry, 17, 21 – 26. https://doi.org/10.1016/j.proche.2015.12.115

Wu, L., Peng, B., Li, Q., Wang, Q., Yan, X., Lin, Q., Ji, C. (2019). Formation of high crystalline LDH sludge for removing Cu and Zn from wastewater by controlled double-jet precipitation. Environmental Science and Pollution Research, 26(19), 19665-19675. https://doi.org/10.1007/s11356-019-05161-7

Yao, J., Huang, R., Jiang, J., Xiao, S., Li, Y. (2021). Lithium storage performance of α-Ni (OH) 2 regulated by partial interlayer anion exchange. Ionics, 27, 1125–1135. https://doi.org/10.1007/s11581-020-03889-8

Yaseneva, P., An, N., Finn, M., Tidemann, N., Jose, N., Voutchkova-Kostal, A., Lapkin, A. (2019). Continuous synthesis of doped layered double hydroxides in a meso-scaleflow reactor. Chemical Engineering Journal, 360, 190–199.

Zaghloul, A., Benhiti, R., Abali, M.H., Ichou, A.A., Soudani, A., Chiban, M., Zerbet. M., Sinan, F. (2021). Kinetic, isotherm, and thermodynamic studies of the removal of methyl orange by synthetic clays prepared using urea or coprecipitation. Euro-Mediterranean Journal for Environmental Integration, 6(1), 1-10. https://doi.org/10.1007/s41207-020-00217-4

Zhang, Z., Chen, S., Zhang, Y., (2019). Effect of hydrotalcite-like compounds with high specific surface area on mechanical properties and carbonation resistance of cementitious composites. Material Research. Express, 6, 115099. https://doi.org/10.1088/2053-1591/ab4b89

Zheng, N., Yu, Y., Shi, W., Yao, H. (2019). Biochar suppresses N 2 O emissions and alters microbial communities in an acidic tea soil. Environmental Science and Pollution Research, 26(35), 35978-35987. https://doi.org/10.1007/s11356-019-06704-8

Zhitova, E.S., Greenwell, H.C., Krzhizhanovskaya, M.G., Apperley, D.C., Pekov, I.V., Yakovenchuk, V.N. (2020). Thermal Evolution of Natural Layered Double Hydroxides: Insight from Quintinite, Hydrotalcite, Stichtite, and Iowaite as Reference Samples for CO3-and Cl-Members of the Hydrotalcite Supergroup. Minerals, 10(11), 961. https://doi.org/10.3390/min10110961

Artículos más leídos del mismo autor/a

1 2 > >>