Intermolecular Interactions THEORETICAL STUDY OF INTERMOLECULAR INTERACTIONS IN (CARBONYL) PSEUDO HALOGENATED COMPOUNDS, XC(O)Z AND X-SCN, X: F, CL, CCL2F, CCL3 AND Z: NCS, SCN
Main Article Content
Abstract
The nature of the main intermolecular interactions was studied and explained by the analysis of crystallographic information files (CIF) of pseudohalogenated molecules CCl2FSCN*, CCl3SCN*, ClC(O)SCN*, FC(O)NCS*, FC(O)SCN*. Using the Hirshfeld method, the contribution of the main intermolecular interactions (2D graphs fingerprints) and the interaction energies were examined. Moreover, dimer, trimer, and pentamer structures were used to analyze AIM, NCI, and Laplacian electron density and electrostatic potential maps, by analyzing various physicochemical parameters such as lagranian G(r), virial potential energy V(r), Laplacian, Hamiltonean kinetic energy H(r) and the operator , which allowed us to identify the nature and type of intermolecular interaction, complemented by NBO analysis. The CCl2FC(O)NCS, CCl2FC(O)SCN, CCl3C(O)NCS, CCl3C(O)SCN, ClC(O)NCS, ClSCN and FSCN molecules did not have crystallographic information (CIF). Therefore, an evaluation was performed by AIM analysis, NCI, Laplacian and electrostatic potential maps. Through software such as Gaussian16W, MultiWfn, Crystal Explorer, Mercury, VMD and WinGx. There was evidence of N...S (chalcogenic), Cl...F (halogenic) and N...Cl (halogenic) sigma hole type interactions present in XC(O)SCN and XSCN molecules (CCl2FSCN*, CCl3SCN*, ClC(O)SCN*, FC(O)NCS* and FC(O)SCN*) studied from the CIF archives. Conversely, in the analysis of electrostatic potential maps and Laplacian behavior of electron density in the atoms, without crystalline structure (CIF), ClSCN evidences a decrease in electron density in the chlorine atom. Therefore, it shows the potential to form N...Cl (halogen) interactions, while FSCN, CCl2FCOSCN, and CCl3COSCN suggest the probability of N...S (chalcogenic) interactions.
Downloads
Article Details
- The authors agree to respect the academic information of other authors, and to assign the copyrights to the journal infoANALÍTICA, so that the article can be edited, published and distributed.
- The content of the scientific articles and the publications that appear in the journal is the exclusive responsibility of their authors. The distribution of the articles published in the infoANALÍTICA Journal is done under a Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
References
Alaminsky, R. J., & Seminario, J. M. (2019). Sigma-holes from iso-molecular electrostatic potential surfaces. Journal of Molecular Modeling, 25(6), 160. https://doi.org/10.1007/s00894-019-4051-2
Bader, R. F. W. (1990). Atoms in molecules: A quantum theory /. Clarendon press,.
Brinck, T., Murray, J. S., & Politzer, P. (1992). Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. International Journal of Quantum Chemistry, 44(S19), 57–64. https://doi.org/10.1002/qua.560440709
Carreño, A. (2019). Estudio estructural y supramolecular por medio de difraccion de rayos x y superficies de hirshfeld del compuesto ácido 2-(e)-((4-hidroxifenil) diazenil) benzoico [Thesis, Universidad Santiago de Cali]. En Repositorio Institucional USC. https://repository.usc.edu.co/handle/20.500.12421/4598
Costa, P. J. (2018). 3. The Halogen bond: Nature and Applications. En Chemical Synergies (pp. 81–106). De Gruyter. https://www.degruyter.com/document/doi/10.1515/9783110482065-003/html
Emeléus, H. J., Haas, A., & Sheppard, N. (1963). 591. Infrared spectra and structures of perthiocyanic acid, its barium salt, (SCN)4Cl2, and (ClSCN)5. Journal of the Chemical Society (Resumed), 0, 3168–3171. https://doi.org/10.1039/JR9630003168
García Reyes, F. (2021). Empaquetamiento cristalino y contactos no convencionales en cristales moleculares [Tesis, Universidad Nacional de La Plata]. https://doi.org/10.35537/10915/121716
Gatti, C. (2005). Chemical bonding in crystals: New directions. Zeitschrift Für Kristallographie - Crystalline Materials, 220(5–6), 399–457. https://doi.org/10.1524/zkri.220.5.399.65073
Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R., & Beer, P. D. (2015). Halogen Bonding in Supramolecular Chemistry. Chemical Reviews, 115(15), 7118–7195. https://doi.org/10.1021/cr500674c
Hirshfeld, F. L. (1977). Bonded-atom fragments for describing molecular charge densities. Theoretica Chimica Acta, 44(2), 129–138. https://doi.org/10.1007/BF00549096
Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., & Yang, W. (2010). Revealing Noncovalent Interactions. Journal of the American Chemical Society, 132(18), 6498–6506. https://doi.org/10.1021/ja100936w
Koebel, M. R., Cooper, A., Schmadeke, G., Jeon, S., Narayan, M., & Sirimulla, S. (2016). S···O and S···N Sulfur Bonding Interactions in Protein–Ligand Complexes: Empirical Considerations and Scoring Function. Journal of Chemical Information and Modeling, 56(12), 2298–2309. https://doi.org/10.1021/acs.jcim.6b00236
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D., & Spackman, M. A. (2017). CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ, 4(5), 575–587. https://doi.org/10.1107/S205225251700848X
Metrangolo, P., & Resnati, G. (2012, noviembre 13). Halogen Bonding: Where We Are and Where We Are Going (world) [Review-article]. American Chemical Society. https://doi.org/10.1021/cg301427a
Murteira Pinheiro, P. de S., Alencar Rodrigues, D., Amaral Alves, M., Wanderley Tinoco, L., Braga Ferreira, G., Sant’Anna, C. M. R. de, & Manssour Fraga, C. A. (2018). Theoretical and experimental characterization of 1,4-N⋯S σ-hole intramolecular interactions in bioactive N -acylhydrazone derivatives. New Journal of Chemistry, 42(1), 497–505. https://doi.org/10.1039/C7NJ03543H
Olsen, J. A., Banner, D. W., Seiler, P., Sander, U. O., D’Arcy, A., Stihle, M., Müller, K., & Diederich, F. (2003). A Fluorine Scan of Thrombin Inhibitors to Map the Fluorophilicity/Fluorophobicity of an Enzyme Active Site: Evidence for CF⋅⋅⋅CO Interactions. Angewandte Chemie International Edition, 42(22), 2507–2511. https://doi.org/10.1002/anie.200351268
Politzer, P., & Murray, J. S. (2013). Enthalpy and entropy factors in gas phase halogen bonding: Compensation and competition. CrystEngComm, 15(16), 3145–3150. https://doi.org/10.1039/C2CE26883C
Politzer, P., S. Murray, J., & Clark, T. (2013). Halogen bonding and other σ-hole interactions: A perspective. Physical Chemistry Chemical Physics, 15(27), 11178–11189. https://doi.org/10.1039/C3CP00054K
Ramos, L. (2011). Síntesis y estudios espectroscópicos de compuestos halógeno-, metan-carbonílicos pseudohalogenados y derivados [Tesis, Universidad Nacional de La Plata]. https://doi.org/10.35537/10915/2631
Ramos, L. A., Ulic, S. E., Romano, R. M., Erben, M. F., Vishnevskiy, Y. V., Reuter, C. G., Mitzel, N. W., Beckers, H., Willner, H., Zeng, X., Bernhardt, E., Ge, M., Tong, S., & Védova., C. O. D. (2013). Spectroscopic Characterization and Constitutional and Rotational Isomerism of ClC(O)SCN and ClC(O)NCS. The Journal of Physical Chemistry A, 117(11), 2383–2399. https://doi.org/10.1021/jp400281g
Reed, A. E., Curtiss, L. A., & Weinhold, F. (2002, mayo 1). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint (world) [Research-article]. American Chemical Society. https://doi.org/10.1021/cr00088a005
Rocha, M. (2020). Síntesis, estudio estructural, espectroscópico y de bioactividad de nuevos ligandos y su aplicación en complejos de coordinación [Tesis, Universidad Nacional de La Plata]. https://doi.org/10.35537/10915/106828
Spackman, M., & Jayatilaka, D. (2009). Hirshfeld surface analysis. CrystEngComm, 11(1), 19–32. https://doi.org/10.1039/B818330A
Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C., & Boeckler, F. M. (2013). Principles and Applications of Halogen Bonding in Medicinal Chemistry and Chemical Biology. Journal of Medicinal Chemistry, 56(4), 1363–1388. https://doi.org/10.1021/jm3012068
Zeng, Y., Zheng, S., & Meng, L. (2004). AIM Studies on Reactions FNCX → FXCN (X = O, S, and Se). The Journal of Physical Chemistry A, 108(47), 10527–10534. https://doi.org/10.1021/jp0472865