REMOVAL OF ORGANIC AZOIC DYES CONGO RED AND METHYL VIOLET IN WATER SOLUTIONS USING ZEROVALENT IRON NANOPARTICLES COATED WITH Solanum mammosum L
Main Article Content
Abstract
The usage of azo dyes can induce a variety of allergy disorders and may even be carcinogenic. The effect of zerovalent iron nanoparticles coated with an aqueous plant extract of Solanum mammosum L. (8.9±2,8 nm) on Congo red and methyl violet dyes in water was investigated in this work. The approach included conditioning the removal process with zerovalent iron nanoparticles without coating as a blank (24.8±6.1 nm). The UV-Vis absorption spectra of the dyes were obtained, and the best removal parameters in terms of adsorbent quantity (0 to 200 mgL -1 ), pH (3, 5, 9, and 11), and contact time by agitation were identified (0 to 30 min). Moreover, the nanoparticles were examined using transmission electron microscopy, scanning electron microscopy, X-ray diffraction and infrared spectroscopy. Because of utilizing of FeNPs-S. mammosum L., the comparative percentage of Congo red dye removal increased from 94.31 to 98.84% and methyl violet removal from 96.28 to 99.90%. It is concluded that zerovalent iron nanoparticles coated with a plant extract are a cost-effective and ecologically friendly option for organic azo dye decontamination operations in water.
Downloads
Article Details
- The authors agree to respect the academic information of other authors, and to assign the copyrights to the journal infoANALÍTICA, so that the article can be edited, published and distributed.
- The content of the scientific articles and the publications that appear in the journal is the exclusive responsibility of their authors. The distribution of the articles published in the infoANALÍTICA Journal is done under a Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
References
Abdelfatah, A. M., Fawzy, M., Eltaweil, A. S., & El-Khouly, M. E. (2021). Green Synthesis of Nano-Zero-Valent Iron Using Ricinus Communis Seeds Extract: Characterization and Application in the Treatment of Methylene Blue-Polluted Water. ACS Omega, 6(39), 25397–25411. https://doi.org/10.1021/acsomega.1c03355
Alazaiza, M. Y. D., Albahnasawi, A., Ali, G. A. M., Bashir, M. J. K., Copty, N. K., Amr, S. S. A., Abushammala, M. F. M., & Al Maskari, T. (2021). Recent Advances of Nanoremediation Technologies for Soil and Groundwater Remediation: A Review. Water, 13(16), 2186. https://doi.org/10.3390/w13162186
Brown, J. P., & Dietrich, P. S. (1983). Mutagenicity of selected sulfonated azo dyes in the Salmonella/microsome assay: Use of aerobic and anaerobic activation procedures. Mutation Research/Genetic Toxicology, 116(3–4), 305–315. https://doi.org/10.1016/0165-1218(83)90068-X
Chattopadhyay, D. P. (2011). Chemistry of dyeing. In M. Clark (Ed.), Handbook of Textile and Industrial Dyeing (Vol. 1, pp.150–183). Elsevier. https://doi.org/10.1533/9780857093974.1.150
Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061–1085. https://doi.org/10.1016/j.biortech .2005.05.001
Deichmann, W. B., & Gerarde, H. W. (1969). Toxicology of drugs and chemicals (4th ed.). Academic Press, Inc.
Ebrahiminezhad, A., Taghizadeh, S., Ghasemi, Y., & Berenjian, A. (2018). Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Science of The Total Environment, 621, 1527–1532. https://doi.org/10.1016/j.scitotenv.2017.10.076
Flores-Rojas, E., Schnabel, D., Justo- Cabrera, E., Solorza-Feria, O., Poggi-Varaldo, H. M., & Breton-Deval, L. (2021). Using Nano Zero-Valent Iron Supported on Diatomite to Remove Acid Blue Dye: Synthesis, Characterization, and Toxicology Test. Sustainability,13(24), 13899. https://doi.org/10.3390/su132413899
Herbst, W., & Hunger, K. (2005). Industrial organic pigments: production, properties, applications (3rd. Ed.). Wiley- VCH Verlag GmbH.
Jha, A. K., & Chakraborty, S. (2020). Photocatalytic degradation of Congo Red under UV irradiation by zero valent iron nano particles (nZVI) synthesized using Shorea robusta (Sal) leaf extract. Water Science and Technology, 82(11), 2491–2502. https://doi.org/10.2166/wst.2020.517
Kauppinen, T., Pukkala, E., Saalo, A., & Sasco, A. J. (2003). Exposure to chemical carcinogens and risk of cancer among Finnish laboratory workers. American Journal of Industrial Medicine, 44(4), 343–350. https://doi.org/10.1002/ajim.10278
Khashij, M., Dalvand, A., Mehralian, M., Ebrahimi, A. A., & Khosravi, R. (2020). Removal of reactive black 5 dye using zero valent iron nanoparticles produced by a novel green synthesis method. Pigment & Resin Technology, 49(3), 215–221. https://doi.org/10.1108/PRT-10-2019-0092
King, D. (2007). Dyeing of cotton and cotton products. In S. Gordon & Y.-L. Hsieh (Eds.), Cotton (1st. Ed., pp. 353–377). Elsevier. https://doi.org/10.1533/9781845692483.2.353
Le, N. T., Dang, T.-D., Hoang Binh, K., Nguyen, T. M., Xuan, T. N., La, D. D., Kumar Nadda, A., Chang, S. W., & Nguyen, D. D. (2022). Green synthesis of highly stable zero-valent iron nanoparticles for organic dye treatment using Cleistocalyx operculatus leaf extract. Sustainable Chemistry and Pharmacy, 25, 100598. https://doi.org/10.1016/j.scp.2022.100598
Li, Q., Chen, Z., Wang, H., Yang, H., Wen, T., Wang, S., Hu, B., & Wang, X. (2021). Removal of organic compounds by nanoscale zero-valent iron and its composites. Science of The Total Environment, 792, 148546.
https://doi.org/10.1016/j.scitotenv.2021.148546
Lin, Y.-H., Tseng, H.-H., Wey, M.-Y., & Lin, M.-D. (2010). Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Science of The Total Environment, 408(10), 2260–2267. https://doi.org/10.1016/j.scitoten v.2010.01.039
Liu, A., Liu, J., & Zhang, W. (2015). Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water. Chemosphere, 119, 1068–1074. https://doi.org/10.1016/j.chemosphere.2014.09.026
Liu, R., Zhang, B., Mei, D., Zhang, H., & Liu, J. (2011). Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination, 268(1–3), 111–116. https://doi.org/10.1016/j.desal.2010.10.006
Ofomaja, A. E. (2008). Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust. Chemical Engineering Journal, 143(1–3), 85–95. https://doi.org/10.1016/j.cej.2007.12.019
Pilaquinga, F., Morejón, B., Ganchala, D., Morey, J., Piña, N., Debut, A., & Neira, M. (2019). Green synthesis of silver nanoparticles using Solanum mammosum L. (Solanaceae) fruit extract and their larvicidal activity against
Aedes aegypti L. (Diptera: Culicidae). PLOS ONE, 14(10), e0224109. https://doi.org/10.1371/journal.pone.0224109
Puthukkara P, A. R., Jose T, S., & S, D.lal. (2021). Plant mediated synthesis of zero valent iron nanoparticles and its application in water treatment. Journal of Environmental Chemical Engineering, 9(1), 104569. https://doi.org/10.1016/j.jece.2020.104569
Ramesh, M., Anbuvannan, M., & Viruthagiri, G. (2015). Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 864–870. https://doi.org/10.1016/j.saa.2014.09.105
Rosendal, K., & Bernheimer, A. W. (1952). Paradoxical effect of Congo red on the toxicity of streptolysin S for mice. Journal of Immunology (Baltimore, Md. :1950), 68(1), 53–60.
Sabnis, R. W. (2007). Handbook of Acid-Base Indicators. CRC Press. https://doi.org/10.1201/9780849382192
Sabnis, R. W. (2010). Handbook of biological dyes and stains: synthesis and industrial applications. John Wiley & Sons.
Saltos E., C., Chuquer S., D., Pazmiño V., K., Fernández M., L., & Pilaquinga F., F. (2019). Remoción de tartrazina en agua usando nanopartículas de hierro cerovalentes. InfoANALÍTICA, 7(2), 95–109. https://doi.org/10.26807/ia.v7i2.106
Shojaei, S., & Shojaei, S. (2017). Experimental design and modeling of removal of Acid Green 25 dye by nanoscale zero- valent iron. Euro-Mediterranean Journal for Environmental Integration, 2(1), 15. https://doi.org/10.1007/s41207-017-0026-9
Shu, H.-Y., Chang, M.-C., Chen, C.-C.,& amp; Chen, P.-E. (2010). Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution. Journal of Hazardous Materials, 184(1–3), 499–505.
https://doi.org/10.1016/j.jhazmat .2010.08.064
Ullah, H., Ullah, Z., Fazal, A., & Irfan, M. (2017). Use of Vegetable Waste Extracts for Controlling Microstructure of CuO Nanoparticles: Green Synthesis, Characterization, and Photocatalytic Applications. Journal of Chemistry, 2017, 1–5. https://doi.org/10.1155/2017/2721798
Varjani, S., Rakholiya, P., Shindhal, T., Shah, A. V., & Ngo, H. H. (2021). Trends in dye industry effluent treatment and recovery of value added products. Journalof Water Process Engineering, 39(June), 101734.
https://doi.org/10.1016/j.jwpe.2020.101734
Vega Orcacitas, M. (2001). Etnobotánica de la amazonía peruana (1ra. Ed.). Abya-Yala.
Wanakai, S. I., Kareru, P. G., Makhanu, D. S., & Madivoli, E. S. (2023). Advances in green nanotechnology: Data for green synthesis and characterization of iron nanoparticles synthesized using Galinsoga parviflora, Conyza bonariensis and Bidens pilosa leaf extracts, and their application in degradation of methylene blue dye an. Data in Brief, 46, 108882. https://doi.org/10.1016/j.dib.2022.108882
Zhao, Z., Liu, J., Tai, C., Zhou, Q., Hu, J., & Jiang, G. (2008). Rapid decolorization of water soluble azo-dyes by nanosized zero-valent iron immobilized on the exchange resin. Science in China Series B: Chemistry, 51(2), 186–192. https://doi.org/10.1007/s11426-007-0121-x