REMOCIÓN DE LOS COLORANTES ORGÁNICOS AZOICOS ROJO CONGO Y VIOLETA DE METILO EN SOLUCIONES ACUOSAS USANDO NANOPARTÍCULAS DE HIERRO CEROVALENTE RECUBIERTAS CON Solanum mammosum L

Contenido principal del artículo

Maria Fernanda Pilaquinga F.
https://orcid.org/0000-0002-0841-6313
Catalina Santos E.
Katherine Pazmiño-Viteri
Karla Vizuete
David Chuquer
Alexis Debut

Resumen

El uso de colorantes azoicos puede causar un sin número de enfermedades alérgicas e incluso incluirse como sustancias cancerígenas. En este estudio se analizó el uso de nanopartículas Cero Valentes de hierro recubiertas con un extracto acuoso vegetal de Solanum mammosum L. (8,9±2,8 nm) sobre los colorantes rojo Congo y violeta de metilo en agua. La metodología constó del acondicionamiento del proceso de remoción
usando como blanco nanopartículas de hierro Cero Valentes sin recubrimiento usadas como blanco (24,8±6,1 nm). Se obtuvieron los espectros de absorción UV-Vis de los colorantes y se determinó las condiciones óptimas de remoción en cuanto a cantidad de adsorbente (0 a 200 mgL -1 ), pH (3, 5, 9 y 11) y tiempo de contacto por agitación (0 a 30 min). Además, las nanopartículas obtenidas se caracterizaron por microscopía de transmisión electrónica, microscopía de barrido electrónico, difracción de rayos X y espectrofotometría de infrarrojos. Como resultados se obtuvo que el comparar el porcentaje de remoción del colorante rojo Congo aumentó de 94,31 a 99,29% y violeta de metilo de 96,28 aumentó a 99,47 % usando FeNPs-S. mammosum L. Se concluye que las nanopartículas de hierro Cero Valente recubiertas con un extracto vegetal, son una alternativa económica y amigable con el medio ambiente en procesos de descontaminación de colorantes orgánicos azoicos disueltos en agua.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Sección
Artículos Científicos

Citas

Abdelfatah, A. M., Fawzy, M., Eltaweil, A. S., & El-Khouly, M. E. (2021). Green Synthesis of Nano-Zero-Valent Iron Using Ricinus Communis Seeds Extract: Characterization and Application in the Treatment of Methylene Blue-Polluted Water. ACS Omega, 6(39), 25397–25411. https://doi.org/10.1021/acsomega.1c03355

Alazaiza, M. Y. D., Albahnasawi, A., Ali, G. A. M., Bashir, M. J. K., Copty, N. K., Amr, S. S. A., Abushammala, M. F. M., & Al Maskari, T. (2021). Recent Advances of Nanoremediation Technologies for Soil and Groundwater Remediation: A Review. Water, 13(16), 2186. https://doi.org/10.3390/w13162186

Brown, J. P., & Dietrich, P. S. (1983). Mutagenicity of selected sulfonated azo dyes in the Salmonella/microsome assay: Use of aerobic and anaerobic activation procedures. Mutation Research/Genetic Toxicology, 116(3–4), 305–315. https://doi.org/10.1016/0165-1218(83)90068-X

Chattopadhyay, D. P. (2011). Chemistry of dyeing. In M. Clark (Ed.), Handbook of Textile and Industrial Dyeing (Vol. 1, pp.150–183). Elsevier. https://doi.org/10.1533/9780857093974.1.150

Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061–1085. https://doi.org/10.1016/j.biortech .2005.05.001

Deichmann, W. B., & Gerarde, H. W. (1969). Toxicology of drugs and chemicals (4th ed.). Academic Press, Inc.

Ebrahiminezhad, A., Taghizadeh, S., Ghasemi, Y., & Berenjian, A. (2018). Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Science of The Total Environment, 621, 1527–1532. https://doi.org/10.1016/j.scitotenv.2017.10.076

Flores-Rojas, E., Schnabel, D., Justo- Cabrera, E., Solorza-Feria, O., Poggi-Varaldo, H. M., & Breton-Deval, L. (2021). Using Nano Zero-Valent Iron Supported on Diatomite to Remove Acid Blue Dye: Synthesis, Characterization, and Toxicology Test. Sustainability,13(24), 13899. https://doi.org/10.3390/su132413899

Herbst, W., & Hunger, K. (2005). Industrial organic pigments: production, properties, applications (3rd. Ed.). Wiley- VCH Verlag GmbH.

Jha, A. K., & Chakraborty, S. (2020). Photocatalytic degradation of Congo Red under UV irradiation by zero valent iron nano particles (nZVI) synthesized using Shorea robusta (Sal) leaf extract. Water Science and Technology, 82(11), 2491–2502. https://doi.org/10.2166/wst.2020.517

Kauppinen, T., Pukkala, E., Saalo, A., & Sasco, A. J. (2003). Exposure to chemical carcinogens and risk of cancer among Finnish laboratory workers. American Journal of Industrial Medicine, 44(4), 343–350. https://doi.org/10.1002/ajim.10278

Khashij, M., Dalvand, A., Mehralian, M., Ebrahimi, A. A., & Khosravi, R. (2020). Removal of reactive black 5 dye using zero valent iron nanoparticles produced by a novel green synthesis method. Pigment & Resin Technology, 49(3), 215–221. https://doi.org/10.1108/PRT-10-2019-0092

King, D. (2007). Dyeing of cotton and cotton products. In S. Gordon & Y.-L. Hsieh (Eds.), Cotton (1st. Ed., pp. 353–377). Elsevier. https://doi.org/10.1533/9781845692483.2.353

Le, N. T., Dang, T.-D., Hoang Binh, K., Nguyen, T. M., Xuan, T. N., La, D. D., Kumar Nadda, A., Chang, S. W., & Nguyen, D. D. (2022). Green synthesis of highly stable zero-valent iron nanoparticles for organic dye treatment using Cleistocalyx operculatus leaf extract. Sustainable Chemistry and Pharmacy, 25, 100598. https://doi.org/10.1016/j.scp.2022.100598

Li, Q., Chen, Z., Wang, H., Yang, H., Wen, T., Wang, S., Hu, B., & Wang, X. (2021). Removal of organic compounds by nanoscale zero-valent iron and its composites. Science of The Total Environment, 792, 148546.

https://doi.org/10.1016/j.scitotenv.2021.148546

Lin, Y.-H., Tseng, H.-H., Wey, M.-Y., & Lin, M.-D. (2010). Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Science of The Total Environment, 408(10), 2260–2267. https://doi.org/10.1016/j.scitoten v.2010.01.039

Liu, A., Liu, J., & Zhang, W. (2015). Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water. Chemosphere, 119, 1068–1074. https://doi.org/10.1016/j.chemosphere.2014.09.026

Liu, R., Zhang, B., Mei, D., Zhang, H., & Liu, J. (2011). Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination, 268(1–3), 111–116. https://doi.org/10.1016/j.desal.2010.10.006

Ofomaja, A. E. (2008). Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust. Chemical Engineering Journal, 143(1–3), 85–95. https://doi.org/10.1016/j.cej.2007.12.019

Pilaquinga, F., Morejón, B., Ganchala, D., Morey, J., Piña, N., Debut, A., & Neira, M. (2019). Green synthesis of silver nanoparticles using Solanum mammosum L. (Solanaceae) fruit extract and their larvicidal activity against

Aedes aegypti L. (Diptera: Culicidae). PLOS ONE, 14(10), e0224109. https://doi.org/10.1371/journal.pone.0224109

Puthukkara P, A. R., Jose T, S., & S, D.lal. (2021). Plant mediated synthesis of zero valent iron nanoparticles and its application in water treatment. Journal of Environmental Chemical Engineering, 9(1), 104569. https://doi.org/10.1016/j.jece.2020.104569

Ramesh, M., Anbuvannan, M., & Viruthagiri, G. (2015). Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 864–870. https://doi.org/10.1016/j.saa.2014.09.105

Rosendal, K., & Bernheimer, A. W. (1952). Paradoxical effect of Congo red on the toxicity of streptolysin S for mice. Journal of Immunology (Baltimore, Md. :1950), 68(1), 53–60.

Sabnis, R. W. (2007). Handbook of Acid-Base Indicators. CRC Press. https://doi.org/10.1201/9780849382192

Sabnis, R. W. (2010). Handbook of biological dyes and stains: synthesis and industrial applications. John Wiley & Sons.

Saltos E., C., Chuquer S., D., Pazmiño V., K., Fernández M., L., & Pilaquinga F., F. (2019). Remoción de tartrazina en agua usando nanopartículas de hierro cerovalentes. InfoANALÍTICA, 7(2), 95–109. https://doi.org/10.26807/ia.v7i2.106

Shojaei, S., & Shojaei, S. (2017). Experimental design and modeling of removal of Acid Green 25 dye by nanoscale zero- valent iron. Euro-Mediterranean Journal for Environmental Integration, 2(1), 15. https://doi.org/10.1007/s41207-017-0026-9

Shu, H.-Y., Chang, M.-C., Chen, C.-C.,& amp; Chen, P.-E. (2010). Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution. Journal of Hazardous Materials, 184(1–3), 499–505.

https://doi.org/10.1016/j.jhazmat .2010.08.064

Ullah, H., Ullah, Z., Fazal, A., & Irfan, M. (2017). Use of Vegetable Waste Extracts for Controlling Microstructure of CuO Nanoparticles: Green Synthesis, Characterization, and Photocatalytic Applications. Journal of Chemistry, 2017, 1–5. https://doi.org/10.1155/2017/2721798

Varjani, S., Rakholiya, P., Shindhal, T., Shah, A. V., & Ngo, H. H. (2021). Trends in dye industry effluent treatment and recovery of value added products. Journalof Water Process Engineering, 39(June), 101734.

https://doi.org/10.1016/j.jwpe.2020.101734

Vega Orcacitas, M. (2001). Etnobotánica de la amazonía peruana (1ra. Ed.). Abya-Yala.

Wanakai, S. I., Kareru, P. G., Makhanu, D. S., & Madivoli, E. S. (2023). Advances in green nanotechnology: Data for green synthesis and characterization of iron nanoparticles synthesized using Galinsoga parviflora, Conyza bonariensis and Bidens pilosa leaf extracts, and their application in degradation of methylene blue dye an. Data in Brief, 46, 108882. https://doi.org/10.1016/j.dib.2022.108882

Zhao, Z., Liu, J., Tai, C., Zhou, Q., Hu, J., & Jiang, G. (2008). Rapid decolorization of water soluble azo-dyes by nanosized zero-valent iron immobilized on the exchange resin. Science in China Series B: Chemistry, 51(2), 186–192. https://doi.org/10.1007/s11426-007-0121-x