STUDY OF THE EFFECTS OF INULIN USED IN THE REFORMULATION OF PROCESSED MEAT
Main Article Content
Abstract
Inulin has been presented as a potential candidate for the reformulation of processed meat. However, its inclusion and consequent redesign of the food recipe can have repercussions on its quality parameters. Therefore, the present investigation was carried out with the objective of studying the effects of the inulin used in the reformulation of processed meat, on its quality parameters, such as: its proximal composition, color, texture, technological properties and sensory attributes. Through the documentary review of scientific articles related to the subject worldwide, which were found in the period between 2000 and 2021. Scientific evidence revealed that the inulin used in the reformulation of processed meat can modify the quality parameters, when compared to conventional processed meat. Resulting in products with increased humidity, accompanied by bright colors, with modified textures and favorable or unfavorable sensory attributes. However, inulin reformulated processed meat obtained the same sensory acceptability as conventional processed meat. In addition, its consumption was related to protective effects against carcinogenic substances and with beneficial effects for health reported in in vivo and in vitro studies. It is concluded that inulin can replace fat in different types of processed meat and can also be a significant source of dietary fiber according to the studies analyzed.
Downloads
Article Details
- The authors agree to respect the academic information of other authors, and to assign the copyrights to the journal infoANALÍTICA, so that the article can be edited, published and distributed.
- The content of the scientific articles and the publications that appear in the journal is the exclusive responsibility of their authors. The distribution of the articles published in the infoANALÍTICA Journal is done under a Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
References
Afoakwah, N. A., Dong, Y., Zhao, Y., Xiong, Z., Owusu, J., Wang, Y., & Zhang, J. (2015). Characterization of Jerusalem artichoke (Helianthus tuberosus L.) powder and its application in emulsion-type sausage. LWT - Food Science and Technology,
Afshin, A., Sur, P. J., Fay, K. A., Cornaby, L., Ferrara, G., Salama, J. S., Mullany, E. C., Abate, K. H., Abbafati, C., Abebe, Z., Afarideh, M., Aggarwal, A., Agrawal, S., Akinyemiju, T., Alahdab, F., Bacha, U., Bachman, V. F., Badali, H., Badawi, A., … Murray, C. J. L. (2019). Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 393(10184), 1958-1972.
Alaei, F., Hojjatoleslamy, M., & Hashemi Dehkordi, S. M. (2018). The effect of inulin as a fat substitute on the physicochemical and sensory properties of chicken sausages. Food Science & Nutrition, 6(2), 512-519.
Álvarez, D., & Barbut, S. (2013). Effect of inulin, β-Glucan and their mixtures on emulsion stability, color and textural parameters of cooked meat batters. Meat Science, 94(3), 320-327.
Angiolillo, L., Conte, A., & Del Nobile, M. A. (2015). Technological strategies to produce functional meat burgers. LWT - Food Science and Technology, 62(1), 697-703.
Araujo, C. D. L. de, Costa, G. F. da, Oliveira, F. L. N. de, & Azerêdo, G. A. (2021). Elaboração de salsichas de frango com redução de gordura e adição de inulina. Brazilian Journal of Food Technology, 24, e2019334.
Archer, B. J., Johnson, S. K., Devereux, H. M., & Baxter, A. L. (2004). Effect of fat replacement by inulin or lupin-kernel fibre on sausage patty acceptability, post-meal perceptions of satiety and food intake in men. British Journal of Nutrition, 91(4), 591-599.
Bechthold, A., Boeing, H., Schwedhelm, C., Hoffmann, G., Knüppel, S., Iqbal, K., De Henauw, S., Michels, N., Devleesschauwer, B., Schlesinger, S., & Schwingshackl, L. (2019). Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Critical Reviews in Food Science and Nutrition, 59(7), 1071-1090.
Berizi, E., Shekarforoush, S. S., Mohammadinezhad, S., Hosseinzadeh, S., & Farahnaki, A. (2017). The use of inulin as fat replacer and its effect on texture and sensory properties of emulsion type sausages.
Bouvard, V., Loomis, D., Guyton, K. Z., Grosse, Y., Ghissassi, F. E., Benbrahim-Tallaa, L., Guha, N., Mattock, H., & Straif, K. (2015). Carcinogenicity of consumption of red and processed meat. The Lancet Oncology, 16(16), 1599-1600.
Burdzy, S., Augustyńska-Prejsnar, A., & Sokołowicz, Z. (2021). Effect of the addition of inulin on the quality of poultry burgers.
Cardona, M., Gorriz, A., Barat, J. M., & Fernández-Segovia, I. (2020). Perception of fat and other quality parameters in minced and burger meat from Spanish consumer studies. Meat Science, 166(145), 108138.
Cegielka, A., & Tambor, K. (2012). Effect of Inulin on the Physical, Chemical and Sensory Quality Attributes of Polish Chicken Burgers. Journal of Food Research, 1(1), 169.
CODEX. (2021). Directrices sobre etiquetado nutricional. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B2-1985%252FCXG_002s.pdf
El Zeny, T., Essa, R., Bisar, B., & Metwalli, S. (2019). Effect of using chicory roots powder as a fat replacer on beef burger quality. Slovenian Veterinary Research, 56(22-Suppl).
El-Beltagy, A. E., Boudy, E. A., & Gaafar, A. M. (2007). Quality characteristics of low-fat beef patties formulated with jerusalem artichoke (helianthus tuberosus l.). 23.
FDA, R. (2018). GRAS Determination ofInulin from Jerusalem Artichoke for Use in Food. 105.
Fernández, J., Ledesma, E., Monte, J., Millán, E., Costa, P., de la Fuente, V. G., García, M. T. F., Martínez-Camblor, P., Villar, C. J., & Lombó, F. (2019). Traditional Processed Meat Products Re-designed Towards Inulin-rich Functional Foods Reduce Polyps in Two Colorectal Cancer Animal Models. Scientific Reports, 9(1), 14783.
Gadekar, Y. P., Shinde, A. K., & Karim, S. A. (2016). Effect of inulin on physico-chemical, textural and sensory characteristics of reduced fat lamb nuggets. Veterinary and Animal Science, S2451943X16300011.
Gil M., Cáceres, E., & Selgas, M. (2006). Effect of inulin on the textural and sensory properties of mortadella, a Spanish cooked meat product. International Journal of Food Science and Technology, 41(10), 1207-1215.
Glisic, M., Baltic, M., Glisic, M., Trbovic, D., Jokanovic, M., Parunovic, N., Dimitrijevic, M., Suvajdzic, B., Boskovic, M., & Vasilev, D. (2019). Inulin‐based emulsion‐filled gel as a fat replacer in prebiotic‐ and PUFA ‐enriched dry fermented sausages. International Journal of Food Science & Technology, 54(3), 787-797.
Gómez-Muriel, L. A., Benítez-Sepúlveda, E., Velásquez-Henao, A., & Jaramillo-Yepes, F. (2021). Desarrollo de una carne de hamburguesa de pechuga de pollo con adición de fibra y reducción de grasa. Perspectivas en Nutrición Humana, 23(1), 15-26.
Grasso, S., Brunton, N. P., Lyng, J. G., Lalor, F., & Monahan, F. J. (2014). Healthy processed meat products – Regulatory, reformulation and consumer challenges. Trends in Food Science & Technology, 39(1), 4-17.
Hadorn, R., Eberhard, P., Guggisberg, D., Piccinali, P., & Schlichtherle-Cerny, H. (2008). Effect of fat score on the quality of various meat products. Meat Science, 80(3), 765-770.
Hayes, J., Auty, M., & Allen, P. (2011). The effect of inulin as a prebiotic fibre on organoleptic and technological properties of standard and low fat pork breakfast sausages. 5.
Huang, S. C., Tsai, Y. F., & Chen, C. M. (2011). Effects of Wheat Fiber, Oat Fiber, and Inulin on Sensory and Physico-chemical Properties of Chinese-style Sausages. Asian-Australasian Journal of Animal Sciences, 24(6), 875-880.
IARC. (2018). Red Meat and Processed Meat. International Agency for Research on Cancer.
Jerez, M. K. L. (2012). Efecto de dos porcentajes de inulina, como fuente de fibra, en las propiedades físicas, microbiológicas y sensoriales en una salchicha frankfurter de pollo reducida en grasa. 38.
Jiménez Colmenero, F. (2000). Relevant factors in strategies for fat reduction in meat products. Trends in Food Science & Technology, 11(2), 56-66.
Keenan, D. F., Resconi, V. C., Kerry, J. P., & Hamill, R. M. (2014). Modelling the influence of inulin as a fat substitute in comminuted meat products on their physico-chemical characteristics and eating quality using a mixture design approach. Meat Science, 96(3), 1384-1394.
Kovalskys, I., Rigotti, A., Koletzko, B., Fisberg, M., Gómez, G., Herrera-Cuenca, M., Cortés Sanabria, L. Y., Yépez García, M. C., Pareja, R. G., Zimberg, I. Z., Del Arco, A., Zonis, L., Previdelli, A. N., Guajardo, V., Moreno, L. A., Fisberg, R., & the ELANS Study Group. (2019). Latin American consumption of major food groups: Results from the ELANS study. PLOS ONE, 14(12), e0225101.
Kris-Etherton, P. M., & Krauss, R. M. (2020). Public health guidelines should recommend reducing saturated fat consumption as much as possible: YES. The American Journal of Clinical Nutrition, 112(1), 13-18.
Kumar, Y. (2021). Development of Low-Fat/Reduced-Fat Processed Meat Products using Fat Replacers and Analogues. Food Reviews International, 37(3), 296-312.
Latoch, A., Glibowski, P., & Libera, J. (2016). The effect of replacing pork fat of inulin on the physicochemical and sensory quality of guinea fowl pate. Acta Scientiarum Polonorum Technologia Alimentaria, 15(3), 311-320.
Mendoza, E., Garcı́a, M. L., Casas, C., & Selgas, M. D. (2001). Inulin as fat substitute in low fat, dry fermented sausages. Meat Science, 57(4), 387-393.
Menegas, L. Z., Pimentel, T. C., Garcia, S., & Prudencio, S. H. (2013). Dry-fermented chicken sausage produced with inulin and corn oil: Physicochemical, microbiological, and textural characteristics and acceptability during storage. Meat Science, 93(3), 501-506.
Menegas, L. Z., Pimentel, T. C., Garcia, S., & Prudencio, S. H. (2017). Effect of adding inulin as a partial substitute for corn oil on the physicochemical and microbiological characteristics during processing of dry-fermented chicken sausage. Journal of Food Processing and Preservation, 41(5), e13166.
Müller, R., & Klein, G. (2020). The COVID-19 Pandemic and Project Management Research. Project Management Journal, 51(6), 579-581.
Nowak, B., von Mueffling, T., Grotheer, J., Klein, G., & Watkinson, B.-M. (2007). Energy Content, Sensory Properties, and Microbiological Shelf Life of German Bologna-Type Sausages Produced with Citrate or Phosphate and with Inulin as Fat Replacer. Journal of Food Science, 72(9), S629-S638.
Olmedilla-Alonso, B., Jiménez-Colmenero, F., & Sánchez-Muniz, F. J. (2013). Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Science, 95(4), 919-930.
OMS. (2015). OMS | El Centro Internacional de Investigaciones sobre el Cáncer evalúa el consumo de la carne roja y de la carne procesada. WHO; World Health Organization. http://www.who.int/mediacentre/news/releases/2015/cancer-red-meat/es/
Özer, C. O. (2019b). Utilization of Jerusalem artichoke powder in production of low-fat and fat-free fermented sausage. Italian Journal of Food Science, 31 (2)
Peña, M. A. (2020). Inulina: Una alternativa para el desarrollo de productos cárnicos funcionales. ACI Avances en Ciencias e Ingenierías, 11(3).
Prapasuwannakul, N. (2018). Characteristics of Reduced-Fat Thai Pork Sausage with Inulin Addition. ETP International Journal of Food Engineering, 322-326.
Quino, M. L., & Alvarado, J. A. (2014). Physicochemical and sensorial effects of the use of dietary fiber in sausages of the vienna type of low fat content. Revista boliviana de química, 31, 7.
Sojic, B., Petrovic, L., Pesovic, B., Tomovic, V., Jokanovic, M., Dzinic, N., & Salitrezic, P. (2011). The influence of inulin addition on the physico-chemical and sensory characteristics of reduced-fat cooked sausages. Acta Periodica Technologica, 42, 157-164.
Toldrá, F., & Reig, M. (2011). Innovations for healthier processed meats. Trends in Food Science & Technology, 22(9), 517-522.
Tomaschunas, M., Zörb, R., Fischer, J., Köhn, E., Hinrichs, J., & Busch-Stockfisch, M. (2013). Changes in sensory properties and consumer acceptance of reduced fat pork Lyon-style and liver sausages containing inulin and citrus fiber as fat replacers. Meat Science, 95(3), 629-640.
Vidal, V. A. S., Paglarini, C. S., Lorenzo, J. M., Munekata, P. E. S., & Pollonio, M. A. R. (2021). Salted Meat Products: Nutritional Characteristics, Processing and Strategies for Sodium Reduction. Food Reviews International, 1-20.
Villalobos, C. E. V., Simental, S. S., & Villalobos, L. H. (2010). Efecto de la Fibra Dietética sobre la Textura de Salchichas Tipo Viena. Dialnet, 4(2), 37 - 43.
Xiao-Hui, G., Jing, W., Ye-Ling, Z., Ying, Z., Qiu-Jin, Z., Ling-Gao, L., Dan, C., Yan-Pei, H., Sha, G., & Ming-Ming, L. (2022). Mediated curing strategy: An overview of salt reduction for dry-cured meat products. Food Reviews International, 1-16.
Yoo, S. S., Kook, S. H., Park, S. Y., Shim, J. H., & Chin, K. B. (2007). Physicochemical characteristics, textural properties and volatile compounds in comminuted sausages as affected by various fat levels and fat replacers. International Journal of Food Science & Technology, 42(9), 1114-1122.
Zhang, Y., Dong, M., Zhang, X., Hu, Y., Han, M., Xu, X., & Zhou, G. (2020). Effects of inulin on the gel properties and molecular structure of porcine myosin: A underlying mechanisms study. Food Hydrocolloids, 108, 105974.
Zwolan, A., Cegiełka, A., Pietrzak, D., & Tyburcy, A. (2017). The effect of fat substitution with fiber preparations on selected quality characteristics of baked poultry pâtés. Zeszyty Problemowe Postępów Nauk Rolniczych, 590, 93-101.