Intramolecular coupling effects in optical responses of two-level systems

Main Article Content

Jose Luis Paz
Eleana Ruiz-Hinojoza
Ysaías Alvarado
Luis Lascano
Cesar Costa-Vera

Abstract

In this work, the effects of the vibronic coupling on the nonlinear optical properties of organic dyes immersed in a thermal bath with the use of the Four-Wave mixing spectroscopy are evaluated. The isolated molecule is modeled as energy curves of Born-Oppenheimer, consisting of two-electronic states described by harmonic potentials, with minima displaced in energy and nuclear coordinates. Inclusion of a residual Hamiltonian of electronic correlation and/or spin-orbit generates the separation of the two curves according to the rules of avoided crossing. The permanent and transition dipole moments as function of the intramolecular coupling parameters are evaluated. We use the conventional optical Bloch equations, for the calculation of the polarizations induced in the tensorial approach and with them, the nonlinear optical properties. The results show attenuation of the intensity in the optical responses and modifications in their topology, as a consequence of the intramolecular coupling and type of optical transition. Parametric amplifications and the possibility of Switches in the optical properties, arise as a consequence of the insertion of intramolecular couplings.

Downloads

Download data is not yet available.

Article Details

Section
Cientific papers

References

Azumi, T. & Matsuzaki, K. (1977). What does the term “vibronic coupling” mean? Photochemistry and Photobiology, 25(3), 315-326.

Bavli, R., Heller, D. & Band, Y. (1990). Nonlinear optical properties of two-level systems with permanent dipole moments. Physical Review A. 41(7), 3960-3968.

Bersuker, I. (2006). The Jahn-Teller Effect. University Press Cambridge.

Boyd, R.W. (2008). Nonlinear optics: Academic Press, USA.

Castro, J., Yépez, E. & Soto, J. (2004). No adiabaticidad en moléculas y el efecto Jahn-Teller. Revista Mexicana de Física 50(2), 123-131.

Christodoulides, D., Khoo, I., Salamo, G, Stegeman, G Van Stryland, E. (2010). Nonlinear refraction and absorption: mechanism and magnitudes. Advances in Optics and Photonics, 2(1), 60-200.

Cusati, T., Paz, J.L. & Hernández, A. (2004). Effects of the dipole moments behavior on a vibronic coupling model for the Four-Wave Mixing signal. International Journal of Quantum Chemistry, 98(5), 425-433

Di Bartolo., B y Foldberg, V. (1980). Radiationless Processes, Berlin, Springer.

Dunn, J., Alqannas, H. & Lakin, A. (2015). Jahn-Teller effects and surface interactions in multiply-charged fullerene anions and the effect on scanning tunneling microscopy images. Chemical Physics, 460, 14-25.

Fulton, R. & Gouterman, M. (1964). Vibronic coupling II. Spectra of dimers. The Journal of Chemical Physics, 41(8), 2280-2286.

García-Sucre, M., Goychman, F. & Lefebvre, R. (1970). Adiabatic corrections in a simple model of two interacting electronic-potential curves. Physical Review A 2(5), 1738-1745

Grochala, W. & Hoffmann, R. (2000). Chemistry of vibronic coupling. How one might maximize off-diagonal dynamic vibronic coupling constants for intervalence charge-transfer (ivct) states in an aba system (a,b) alkali metal, h, halogen. The Journal of Physical Chemistry A, 104(43), 9740-9749

Guangjun, T. (2013) Electron- vibration coupling and its effects on optical and electronic properties of single molecule. PhD Thesis. Department of theoretical Chemistry and Biology, Royal Institute of Technology, UK

Guseinov, I., Mamedov, B. & Ekenoglu, A. (2006). Analytical evaluation of two-center Franck-Condon overlap integrals over harmonic oscillator wave function. Journal of Physical Sciences, 61(3-4), 141-145.

Iwahara, N., Sato, T. & Tanaka, K. (2011). Molecular design for high-spin molecules in view of vibronic couplings. Polyhedron, 30(18), 3048-3053.

Jagatap, B. & Meath, W. (2002). Contributions of permanent dipole moments to molecular multiphoton excitation cross sections. Journal of the Optical Society of America B, 19(11), 2673-2681.

Kajzar, E, Charra, F., Nunzi, J., Raymond, P., Idiart., E. y Zagorska (1994). Third order nonlinear optical properties and functionalized polymers. En N. Paras (ED.) Frontiers of Polymers and Advanced Materials (11, pp 141-153). Berlin: Springer

Kmetic, M. & Meath, W. (1985). Permanent dipole moments and multiphoton resonances. Physics Letters A, 108(7), 340-343

Paz, J.L., García-Sucre, M., Squitieri, E. & Mujica, V. (1994). The effect of intramolecular coupling on the optical susceptibilities of a two-level molecule. Chemical Physics Letters, 217(3), 333-341.

Paz, J.L., Mastrodomenico, A., Cárdenas, J., Rodríguez, L. y Costa-Vera, C. (2016a). En Lin, S.H., Villaeys, A.A. y Fujimura, Y. (ED). Advances in Multiphoton processes and Spectroscopy (23, pp 211-248). Londres: World Scientific Publishing.

Paz, J.L., Mastrodomenico, A., Costa-Vera, C., Cárdenas-García, J. & Rodríguez, L.G (2015). Rotating wave approximation effects on the Nonlinear Optical responses of complex molecular systems Using a Four-Wave mixing signal. Journal of Modern Optics 62, 403-411.

Paz, J.L., Mastrodomenico, A. & Izquierdo, M. (2013). Symmetry properties in the study of the Rayleigh-Type Optical Mixing signal in presence of a thermal bath. Journal of Nonlinear Optical Physics and Materials, 22(1), 1-13

Squitieri, E., García-Sucre, M., Paz, J.L. & Mujica, V. (1994). Refractive index in a dilute solution of molecules with intramolecular coupling up to third order in the external field. Molecular Physics, 82(1), 227-234.

Teller, E. (1937). The crossing of potential surfaces. The Journal of Physical Chemistry, 431 (1), 109-116.

Walczak, K. (2006). The influence of vibronic coupling on the shape of transport characteristics in inelastic tunneling through molecules. Physica E: Low-dimensional Systems and Nanostructures, 33(1), 110-115