Lead cuantification on craft beer by differential pulse anodic stripping voltammetry on boron-doped diamond electrode
Main Article Content
Abstract
Lead content was determined in six brands of craft beers from Quito-Ecuador, using Differential Pulse Anodic Stripping Voltammetry (DPASV), boron-doped diamond (BDD) as working electrode and acetate buffer as electrolytic solution. BDD was characterized using Scanning Electron Microscopy (SEM) and Cyclic Voltammetry (CV). The SEM results showed that its surface is rough and granular, where it presented a low capacitive current and a quasi-reversible electrochemical response against the Potassium Ferri/Ferrocyanide redox pair. The method was optimized with defined electrochemical signals from the analyte, a linear range between 0.3 - 1.3 mg L-1, repeatability with RSD of 4.56%, reproducibility with RSD of 9.19% and a detection limit of 0.020 mg L-1. The analyzed beers were labeled A, B, C, D, E and F, to preserve the brand identity for this study. Samples B, C, D and E comply with the NTE INEN 2262 norm for lead, whose value is below its maximum allowed limit of 0.1 mg L-1; while samples A and F exceed that limit. The method was validated by comparing results with respect to Flame Atomic Absorption Spectrophotometry (FAAS), where the t-student test indicates that there was no significant difference for both methods. It is concluded that the DPASV technique is an effective alternative for the determination of lead in craft beers.
Downloads
Article Details
- The authors agree to respect the academic information of other authors, and to assign the copyrights to the journal infoANALÍTICA, so that the article can be edited, published and distributed.
- The content of the scientific articles and the publications that appear in the journal is the exclusive responsibility of their authors. The distribution of the articles published in the infoANALÍTICA Journal is done under a Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
References
Bellido, D., Moreno, J. y Hernández, M. (2000) Differentiation and classification of beers with flame atomic spectrometry and molecular absorption spectromeetry and sample preparation assisted by microwaves. Spectrochimica Acta Part B 55, 855 – 864.
Booksh, K. S., y Kowalski, B. R. (1994). Theory of analytical chemistry. Analytical Chemistry, 66(15), 782A–791A. doi: 10.1021/ac00087a001
Corro, M. y Vásquez, V. (2010) Control automático con lógica difusa de la producción de cerveza artesanal en las etapas de maceración y cocción. Scientia Agropecuaria (1) 125 – 137.
Dejmkova, H., Scampicchio, M., Zima, J., Barek, J., y Mannino, S. (2009). Determination of Total Phenols in Foods by Boron Doped Diamond Electrode. Electroanalysis, 21(9), 1014–1018.doi:10.1002/elan.200804508
El Tall, O., Jaffrezic-Renault, N., Sigaud, M., y Vittori, O. (2007). Anodic Stripping Voltammetry of Heavy Metals at Nanocrystalline Boron-Doped Diamond Electrode. Electroanalysis, 19(11), 1152–1159. doi:10.1002/elan.200603834
Garcia-Jareno, J. J., Benito, D., Navarro-Laboulais, J. y Vicente, F. (1998). Electrochemical Behavior of Electrodeposited Prussian Blue Films on ITO Electrode: An Attractive Laboratory Experience. Journal of Chemical Education, 75(7), 881. https://doi.org/10.1021/ed075p881
Ghanjaoui, M., Srji, M., Hor, M. Serdaoui, F. y El Rhazi, M. (2012). Fast procedure of lead determination in alcoholic beverages. J. Mater Enriron. Sci. 3 (1), 85–90.
Izah, S.; Inyang, I.; Angaye, T. y Okowa, T. (2016) A Review of Heavy Metal Concentration and Potential Health Implications of Beverages Consumed in Nigeria. Toxics. 5, 1.
Liu, D., Gou, L., Xu, J., Gao, K., y Kang, X. (2016). Investigations on etching resistance of undoped and boron doped polycrystalline diamond films by oxygen plasma etching. Vacuum, 128, 80–84. doi: 10.1016/j.vacuum.2016.03.012
Lukinac, J., Mastanjević, K., Mastanjević, K., Nakov, G., y Jukić, M. (2019). Computer Vision Method in Beer Quality Evaluation—A Review. Beverages, 5(2), 38. doi:10.3390/beverages5020038
Macpherson, J. V. (2015). A practical guide to using boron doped diamond in electrochemical research. Physical Chemistry Chemical Physics, 17(5), 2935–2949. doi:10.1039/c4cp04022h
Magnusson, B. y Oenemark, U. (Eds.) (2014) Eurachem Guide: The Fitness for Purpose of Analytical Methods – A laboratory Guide to Method Validation and Related Topics (2da Edición).
Matsushigue, I. y de Oliveira, E. (1993) Determination of trace elements in Brazilian beers by ICP-AES. Food Chemistry 47, 205 – 207.
Matusiewicz, H., & Kopras, M. (1997). Methods for Improving the Sensitivity in Atom Trapping Flame Atomic Absorption Spectrometry: Analytical Scheme for the Direct Determination of Trace Elements in Beer. Journal of Analytical Atomic Spectrometry, 12(11), 1287–1291.doi:10.1039/a704407k
Michalski, R. (2009). Applications of Ion Chromatography for the Determination of Inorganic Cations. Critical Reviews in Analytical Chemistry, 39(4), 230–250. doi:10.1080/10408340903032453
Nascentes, C., Kamogawa, M., Fernandes, K., Arruda, M., Nogueira, A. y Nobrega, J. (2005). Direct determination of Cu, Mn, Pb and Zn in beer by thermospray flame furnace atomic absorption spectrometry. Spectrochimica Acta part B. 60, 749 – 753.
NTE INEN 2262:2003, Bebidas alcohólicas, Cerveza, Requisitos.
Organisation Internationale de la Vigne et du Vin (OIV) (2014), Annexe C - Limites maximales acceptables de divers éléments contenus dans le vin, OIV-MA-C1-01, Volume 2, Paris, France
Passaghe, P., Bertoli, S., Tubaro, F., y Buiatti, S. (2015). Monitoring of some selected heavy metals throughout the brewing process of craft beers by inductively coupled plasma mass spectrometry. European Food Research and Technology, 241(2), 199–215. doi:10.1007/s00217-015-2445-7
Pretty, J. R., Evans, E. H., Blubaugh, E. A., Shen, W.-L., Caruso, J. A., y Davidson, T. M. (1990). Minimisation of sample matrix effects and signal enhancement for trace analytes using anodic stripping voltammetry with detection by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 5(6), 437. doi:10.1039/ja9900500437
Sartori, A., Orlando, S., Bellucci, A., Trucchi, D., Abrahami, S., Boehme, T. y Buijnsters, J. G. (2018). Laser-Induced Periodic Surface Structures (LIPSS) on Heavily Boron-Doped Diamond for Electrode Applications. ACS Applied Materials & Interfaces.doi:10.1021/acsami.8b15951
Show, Y., Witek, M. A., Sonthalia, P., y Swain, G. M. (2003). Characterization and electrochemical responsiveness of boron-doped nanocrystalline diamond thin-film electrodes. Chemistry of Materials, 15(4), 879–888. https://doi.org/10.1021/cm020927t
Skoog, D. West, D., Holler, F. y Crouch, S. (2014). Fundamentals of Analytical Chemistry. 9na Edición. Cengage Learning. Estados Unidos
Swain, G. M. (2004). Chapter 4 Electroanalytical applications of diamond electrodes. Semiconductors and Semimetals, 121–148.doi:10.1016/s0080-8784(04)80016-4
Xu, J., Granger, M. C., Chen, Q., Strojek, J. W., Lister, T. E., y Swain, G. M. (1997). Peer Reviewed: Boron-Doped Diamond Thin-Film Electrodes. Analytical Chemistry, 69(19), 591A–597A. doi:10.1021/ac971791z
Yu, Z., Wang, J., Wei, Q., Meng, L., Hao, S., y Long, F. (2013). Preparation, characterization and electrochemical properties of boron-doped diamond films on Nb substrates. Transactions of Nonferrous Metals Society of China, 23(5), 1334–1341.doi:10.1016/s1003-6326 (13)62601-1
Zapata, E.; Gazcón, N. y Flores, L. (2016) A direct method for the determination of lead in beers by differential pulse polarography-anodic stripping voltammetry. J. Mater. Environ. Sci. 7 (12), 4467–4470