ELUCIDATION OF THE STECHIOMETRIC FORMULA OF NANOHYDROTHALCITES OF Mg Y Ni SYNTHESIZED BY THE METHOD OF CO-PRECIPITATION
Main Article Content
Abstract
The lamellar double hydroxides (LDH), also known as Hydrotalcites (HTs), correspond to a family of two-dimensional clay materials notorious for their unique lamellar structures, versatile composition and ion exchange properties. In this research, the determination of the stoichiometry ratio of a set of Hydrotalcites clays, synthesized in the lab by the co-precipitated method, is reported. The content from the trivalent and divalent metals that conform the clays structures was determined through flame atomic absorption spectroscopy. Two types of HTs were synthesized, Ni (HT-Ni) and Mg (HT-Mg); where, according to the resulting calculations, the stoichiometric formulas correspond to Ni0.82Al0.18(OH)2(NO3)0.18 and Mg0.80Al0.20(OH)2(NO3)0.20 respectively, formulas that show great similarities with reported values on the available literature. Furthermore, the synthesized clays were also characterized by X-Ray Diffraction, FT-IR spectroscopy and scanning electron microscopy; where the X-Ray diffraction patterns confirmed the formation of nanometric size HTs particles, with the HT-Mg clay showing better crystalline properties.
Downloads
Article Details
- The authors agree to respect the academic information of other authors, and to assign the copyrights to the journal infoANALÍTICA, so that the article can be edited, published and distributed.
- The content of the scientific articles and the publications that appear in the journal is the exclusive responsibility of their authors. The distribution of the articles published in the infoANALÍTICA Journal is done under a Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
References
Bahramian, A. (2020). The effect of thermal and non-thermal routes on treatment of the Mg–Al layered double hydroxide catalyst dispersed by titania nanoparticles in products distribution arising from poly (ethylene terephthalate) degradation. Polymer Degradation and Stability, 179, 109243. https://doi.org/10.1016/j.polymdegradstab.2020.109243
Balsamo, N., Mendieta, S., Oliva, M., Eimer, G., Crivello, M. (2012). Synthesis and characterization of metal mixed oxides from Layered Double Hydroxides. Procedia Materials Science, 1, 506-513. https://doi.org/10.1016/j.mspro.2012.06.068
Britto, S., Kamath, P.V. (2014). Synthesis, structure refinement and chromate sorption characteristics of an Al-rich bayerite-based layered double hydroxide. Journal of Solid State Chemistry, 215, 206-210. https://doi.org/10.1016/j.jssc.2014.02.031
Chaillot, D., Bennici, S., Brendlé, J. (2020). Layered double hydroxides and LDH-derived materials in chosen environmental applications: a review. Environmental Science and Pollution Research International, 28, 24375–24405 https://doi.org/10.1007/s11356-020-08498-6
Cocheci, L., Barvinschi, P., Pode, R., Popovici, E., Seftel, E.M. (2010). Structural Characterization of Some Mg/Zn-Al Type Hydrotalcites Prepared for Chromate Sorption from Wastewater. Chemical Bulletin of “Politehnica” University of Timisoara, ROMANIA Series of Chemistry and Environmental Engineering, 55(69), 40-45.
Dahdah, E., Estephane, J., Haydar, R., Youssef, Y., El Khoury, B., Gennequin, C., Aboukaïs, A., Abi-Aad, E., Aouad. S. (2020). Biodiesel production from refined sunflower oil over Ca–Mg–Al catalysts: Effect of the composition and the thermal treatment. Renewable Energy, 146, 1242-1248. https://doi.org/10.1016/j.renene.2019.06.171
Edañol, Y.D.G., Poblador, J.A.O., Talusan, T. J. E., Payawan L. M. (2020). Co-precipitation synthesis of Mg-Al-CO3 layered double hydroxides and its adsorption kinetics with phosphate (V) ions. Materials Today: Proceedings, 33(4), 1809-1813. https://doi.org/10.1016/j.matpr.2020.05.059
Fernández, L., Borrás, C., Carrero, H. (2006). Electrochemical behavior of phenol in alkaline media at hydrotalcite-like clay/ anionic surfactants/ glassy carbon modified electrode. Electrochimica Acta, 52, 872-884. https://doi.org/10.1016/j.electacta.2006.06.021
Ferreira, O.P., Alves, O. L., Gouveia, D. X., Souza Filho, A.G., de Paiva, J. A., Mendes Filho, J. (2004). Thermal decomposition and structural reconstruction effect on Mg–Fe-based hydrotalcite compounds. Journal of Solid State Chemistry, 177(9), 3058-3069. https://doi.org/10.1016/j.jssc.2004.04.030
Forano, C., Costantino, U., Prévot, V., Gueho, C.T. (2013). Layered Double Hydroxides (LDH). Developments in Clay Science, 5, 745-782. https://doi.org/10.1016/B978-0-08-098258-8.00025-0
Gevers, B.R., Naseem, S., Leuteritz, A., Labuschagné, F.J. (2019). Comparison of nano-structured transition metal modified tri-metal MgMAl–LDHs (M= Fe, Zn, Cu, Ni, Co) prepared using co-precipitation. RSC advances, 9(48), 28262-28275. https://doi.org/10.1039/C9RA05452A
Hawthorne, F.C., Cooper M.A. (2013). The crystal structure of chalcoalumite: mechanisms of Jahn-Teller-driven distortion in [6] Cu2+-containing oxysalts. Mineralogical Magazine, 77(7), 2901-2912. https://doi.org/10.1180/minmag.2013.077.7.02
Hu, Y., Pan, C., Zheng, X., Liu, S., Peng, X. (2021). Synthesis of NiSiO@ NiAlFe by Hydrothermal method and removal of Cs+ in water. IOP Conference Series: Earth and Environmental Science, 631(1), 012008. http://dx.doi.org/10.1088/1755-1315/631/1/012008
Iyi, N., Matsumoto, T., Kaneko, Y., Kitamura, K. (2004). Deintercalation of Carbonate Ions from a Hydrotalcite-Like Compound: Enhanced Decarbonation Using Acid-Salt Mixed Solution. Chemistry of Materials, 16(15), 2926-2932. https://doi.org/10.1021/cm049579g
Jeung, D.G., Kim, T.H., Oh, J.M. (2020). Homogeneous Incorporation of Gallium into Layered Double Hydroxide Lattice for Potential Radiodiagnostics: Proof-of-Concept. Nanomaterials, 11(1), 44.
Kannan, S., Rives, V., Knözinger, H. (2004). High-temperature transformations of Cu-rich hydrotalcites. Journal of Solid State Chemistry, 177(1), 319-331. https://doi.org/10.3390/nano11010044
Kannan, S., Velu, S., Ramkumar, V., Swamy, C.S. (1995). Synthesis and physicochemical properties of cobalt aluminium hydrotalcites. Journal of Materials Science, 30, 1462-1468. https://doi.org/10.1007/BF00375249
Li, S., Shi, Y., Yang, Y., Zheng, Y., Cai, N. (2013). High-performance CO2 adsorbent from interlayer potassium-promoted stearate-pillared hydrotalcite precursors. Energy & Fuels, 27(9), 5352-5358. https://doi.org/10.1021/ef400914r
Li, W., Jiang, Y., Yang, M., Qu, M., Li, Y., Shen, W., He, R., Li, M. (2021). Controlled synthesis of hierarchical hollow CoLDH nanocages electrocatalysts for oxygen evolution reaction. Chemical Physics, 541, 111011. https://doi.org/10.1016/j.chemphys.2020.111011
Liu, B., Zhang, M., Wang, Y., Chen, Z., Yan, K. (2021). Facile synthesis of defect-rich ultrathin NiCo-LDHs, NiMn-LDHs and NiCoMn-LDHs nanosheets on Ni foam for enhanced oxygen evolution reaction performance. Journal of Alloys and Compounds, 852, 156949. https://doi.org/10.1016/j.jallcom.2020.156949
Manivannan, R., Karthikeyan, C. (2013). Synthesis of Biodiesel from Neem Oil Using Mg-Al Nano Hydrotalcite. Advanced Materials Research, 678, 268-272. https://doi.org/10.4028/www.scientific.net/AMR.678.268
Martínez, D., Carvajal, G. (2012). Hidróxidos Dobles laminares: arcillas sintéticas con aplicaciones en nanotecnología. Avances en Química, 7(1), 87-99.
Mishra, G., Dash, B., Pandey, S. (2018). Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Applied Clay Science, 153, 172-186. https://doi.org/10.1016/j.clay.2017.12.021
Misra, C., Perrotta, A.J. (1992). COMPOSITION AND PROPERTIES OF SYNTHETIC HYDROTALCITES. Clays and Clay Minerals. 40(2), 145-150. https://doi.org/10.1346/CCMN.1992.0400202
Miyata, S. (1983). Anion- Exchange Properties of Hydrotalcite Like Compounds. Clays and Clay minerals, 31(4), 305-311. https://doi.org/10.1346/CCMN.1983.0310409
Pan, S., Li, B., Yu, J., Zhao, L., Zhang, Y. (2021). Composition controllable fabrication of ultrathin 2D CoMn layered double hydroxides for highly efficient electrocatalytic oxygen evolution. Applied Surface Science, 539, 148305. https://doi.org/10.1016/j.apsusc.2020.148305
Pérez, A.G., Paredes-Carrera, S.P., Martínez-Gutiérrez, H., Sánchez-Ochoa, J.C., Pérez-Gutiérrez, R.M., Cayetano-Castro, N. (2020). Effect of combined microwave-ultrasound irradiation in the structure and morphology of hidrotalcite like compounds Al/Mg-CH3COO and its evaluation in the sorption of a reactive dye. Revista Mexicana de Ingeniería Química, 19(1), 363-375. https://doi.org/10.24275/rmiq/Mat567
Pizzoferrato, R., Richetta, M. (2020). Layered Double Hydroxides (LDHs). Crystals, 10(12), 1121.
Rawski, R.I., Sanecki, P.T., Kijowska, K.M., Skital, P. M., Saletnik, D.E. (2016). Regression Analysis in Analytical Chemistry. Determination and Validation of Linear and Quadratic Regression Dependencies. South African Journal of Chemistry, 69,166–173. http://dx.doi.org/10.17159/0379-4350/2016/v69a20
Rodríguez, L.C., Campana, A.M.G., Sendra, J.M.B. (1996). Statistical estimation of linear calibration range. Analytical Letters, 29(7), 1231–1239. https://doi.org/10.1080/00032719608001471
Rybka, K., Matusik, J., Kuligiewicz, A., Leiviskä, T., Cempura, G. (2021). Surface chemistry and structure evaluation of Mg/Al and Mg/Fe LDH derived from magnesite and dolomite in comparison to LDH obtained from chemicals. Applied Surface Science, 538, 147923. https://doi.org/10.1016/j.apsusc.2020.147923
Shekoohi, K., Hosseini, F.S., Haghighi, A. H., Sahrayian, A. (2017). Synthesis of some Mg/Co-Al type nano hydrotalcites and characterization. MethodsX, 4, 86-94. https://doi.org/10.1016/j.mex.2017.01.003
Solovov, V.A., Nikolenko, N.V., Kovalenko, V.L., Kotok, V.A., Burkov, A.А., Kondrat’ev, D.A., Chernovа, O.V., Zhukovin, S.V. (2018). Synthesis of Ni (II)-Ti (IV) layered double hydroxides using coprecipitation at high supersaturation method. ARPN Journal of Engineering and Applied Sciences, 13(24), 9652-9656.
Stamate, A.E., Pavel, O.D., Zavoianu, R., Marcu, I.C. (2020). Highlights on the Catalytic Properties of Polyoxometalate-Intercalated Layered Double Hydroxides: A Review. Catalysts, 10(1), 57. https://doi.org/10.3390/catal10010057
Wen, N., Su, Y., Deng, W., Zhou, H., Zhao, B. (2021). Selective catalytic reduction of NO with C3H6 over CuFe-containing catalysts derived from layered double hydroxides. Fuel, 283, 119296. https://doi.org/10.1016/j.fuel.2020.119296
Wiyantoko, B., Kurniawati, P., Purbaningtias, T.E., Fatimah, I. (2015). Synthesis and Characterization of Hydrotalcite at Different Mg/Al Molar Ratios. Procedia Chemistry, 17, 21 – 26. https://doi.org/10.1016/j.proche.2015.12.115
Wu, L., Peng, B., Li, Q., Wang, Q., Yan, X., Lin, Q., Ji, C. (2019). Formation of high crystalline LDH sludge for removing Cu and Zn from wastewater by controlled double-jet precipitation. Environmental Science and Pollution Research, 26(19), 19665-19675. https://doi.org/10.1007/s11356-019-05161-7
Yao, J., Huang, R., Jiang, J., Xiao, S., Li, Y. (2021). Lithium storage performance of α-Ni (OH) 2 regulated by partial interlayer anion exchange. Ionics, 27, 1125–1135. https://doi.org/10.1007/s11581-020-03889-8
Yaseneva, P., An, N., Finn, M., Tidemann, N., Jose, N., Voutchkova-Kostal, A., Lapkin, A. (2019). Continuous synthesis of doped layered double hydroxides in a meso-scaleflow reactor. Chemical Engineering Journal, 360, 190–199.
Zaghloul, A., Benhiti, R., Abali, M.H., Ichou, A.A., Soudani, A., Chiban, M., Zerbet. M., Sinan, F. (2021). Kinetic, isotherm, and thermodynamic studies of the removal of methyl orange by synthetic clays prepared using urea or coprecipitation. Euro-Mediterranean Journal for Environmental Integration, 6(1), 1-10. https://doi.org/10.1007/s41207-020-00217-4
Zhang, Z., Chen, S., Zhang, Y., (2019). Effect of hydrotalcite-like compounds with high specific surface area on mechanical properties and carbonation resistance of cementitious composites. Material Research. Express, 6, 115099. https://doi.org/10.1088/2053-1591/ab4b89
Zheng, N., Yu, Y., Shi, W., Yao, H. (2019). Biochar suppresses N 2 O emissions and alters microbial communities in an acidic tea soil. Environmental Science and Pollution Research, 26(35), 35978-35987. https://doi.org/10.1007/s11356-019-06704-8
Zhitova, E.S., Greenwell, H.C., Krzhizhanovskaya, M.G., Apperley, D.C., Pekov, I.V., Yakovenchuk, V.N. (2020). Thermal Evolution of Natural Layered Double Hydroxides: Insight from Quintinite, Hydrotalcite, Stichtite, and Iowaite as Reference Samples for CO3-and Cl-Members of the Hydrotalcite Supergroup. Minerals, 10(11), 961. https://doi.org/10.3390/min10110961