PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE WHIT TiO2 COVERED ON GLASS AND POLYTHYLENE-BOTTLES

Main Article Content

Patricio Espinoza-Montero
https://orcid.org/0000-0003-0592-8652
Lenin Paspuel-Pupiales
Lenys Fernández
Wilber Guamán

Abstract

In this work, the degradation of the methylene-blue dye (MB) was evaluated using TiO2 supported in common glass and polyethylene (PET) recycled bottles as photoreactors irradiated with solar light; also, the influence of hydrogen peroxide (H2O2) was studied. The degradation of MB (30 mg L-1) was followed by UV-Vis Spectroscopy, and its mineralization by chemical oxygen demand (COD) and total organic carbon (TOC). The results obtained show that 98.0% of MB was removed in glass bottles after four hours of sunlight exposure without H2O2, while, in the PET bottles, at least 7 hours are required to remove 87.0% of MB. On the contrary, the addition of H2O2 (30% v/v) favored the photodegradation process of MB reaching a degradation efficiency of 99.4% and 99.1% after 4 hours of solar radiation exposure, in glass bottles and PET bottles, respectively. In both processes, the kinetic of MB degradation is adapted to a pseudo-first-order kinetic model. In regard to MB mineralization, >50.0% of TOC removal was reached in glass photoreactors with and in the absence of H2O2, and a maximum degradation of COD (86.2%) was reached with the presence of H2O2 in glass photoreactors. Therefore, the photocatalytic degradation of MB is more efficient with the addition of H2O2, however, due to the formation of highly stable intermediaries’ products the complete mineralization of MB was not achieved.

Downloads

Download data is not yet available.

Article Details

Section
Special Issue

References

Gálvez, J. B., Rodríguez, S. M., Peral, J., Sánchez, B., & Cardona, A. I. (2001). Diseño de reactores para fotocatálisis: evaluación comparativa de las distintas opciones. Eliminación de contaminantes por fotocatálisis heterogénea.

Gálvez, J. B., Rodríguez, S. M., Gasca, C. A. E., Bandala, E. R., Gelover, S., & Leal, T. (2001). Purificación de aguas por fotocatálisis heterogénea: estado del arte. Purificación de águas por fotocatálisis heterogénea: estado da arte. La Plata.

Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1-12. doi: http://dx.doi.org/10.1016/j.jphotochemrev.2007.12.003

Gonçalves, M. S. T., Pinto, E. M. S., Nkeonye, P., & Oliveira-Campos, A. M. F. (2005). Degradation of C.I. Reactive Orange 4 and its simulated dyebath wastewater by heterogeneous photocatalysis. Dyes and Pigments, 64(2), 135-139. doi: http://dx.doi.org/10.1016/j.dyepig.2004.05.004

HACH, 2000. Manual de analisis de agua: Procedimientos Fotometricos, de titulacion y microbiologicos (Issue 970).

Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. doi: http://dx.doi.org/10.1016/j.cattod.2009.06.018

McGuigan, K. G., Joyce, T. M. & Conroy, R. M. (1999). Solar Disinfection: Use of Sunlight to Decontaminate Drinking Water in Developing Countries, J. Med. Microbiol., 48, 785–787.

McGuigan, K. G., Joyce, T. M., Conroy, R. M., Gillespie, J. B., & Elmore-Meegan, M. (1998). Solar Disinfection of Drinking Water Contained in Transparent Plastic Bottles: Characterizing the Bacterial Inactivation Process. J. Appl. Microbiol., 84, 1138–1148

Meichtry, J. M., Lin, H. J., de la Fuente, L., Levy, I. K., Gautier, E. A., Blesa, M. A., & Litter, M. I. (2005). Low-Cost TiO2 Photocatalytic Technology for Water Potabilization in Plastic Bottles For Isolated Regions. Photocatalyst Fixation. Journal of Solar Energy Engineering, 129(1), 119-126. doi: 10.1115/1.2391317

Nakata, K., Ochiai, T., Murakami, T., & Fujishima, A. (2012). Photoenergy conversion with TiO2 photocatalysis: New materials and recent applications. Electrochimica Acta, 84, 103-111. doi: http://dx.doi.org/10.1016/j.electacta.2012.03.035

Pawar, R. C., & Lee, C. S. (2015). Chapter 1 - Basics of Photocatalysis. In R. C. Pawar & C. S. Lee (Eds.), Heterogeneous Nanocomposite-Photocatalysis for Water Purification (pp. 1-23). Boston: William Andrew Publishing.

Pekakis, P. A., Xekoukoulotakis, N. P., & Mantzavinos, D. (2006). Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Research, 40(6), 1276-1286. doi: http://dx.doi.org/10.1016/j.watres.2006.01.019

Peña-Guzmán, C., Ulloa-Sánchez, S., Mora, K., Helena-Bustos, R., Lopez-Barrera, E., Alvarez, J., & Rodriguez-Pinzón, M. (2019). Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. Journal of environmental management, 237, 408-423. doi: https://doi.org/10.1016/j.jenvman.2019.02.100

Primo, A., & García, H. (2013). Chapter 6 - Solar Photocatalysis for Environment Remediation. In S. L. Suib (Ed.), New and Future Developments in Catalysis (pp. 145-165). Amsterdam: Elsevier.

Puentes Camacho, D. (2011). Determinación de parámetros de un modelo axial y en estado transitorio de la biosorción de azul de metileno mediante biomasa de saccharomyces cerevisiae inmovilizada en alginato de calcio en columna empacada. Universidad Autónoma de Nuevo León.

Rauf, M. A., & Ashraf, S. S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 151(1–3), 10-18. doi: http://dx.doi.org/10.1016/j.cej.2009.02.026

Rupa, A. V., Manikandan, D., Divakar, D., & Sivakumar, T. (2007). Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17. Journal of Hazardous Materials, 147(3), 906-913. doi: https://doi.org/10.1016/j.jhazmat.2007.01.107

Sadik, W. A. (2007). Decolourization of an Azo Dye by Heterogeneous Photocatalysis. Process Safety and Environmental Protection, 85(6), 515-520. doi: http://dx.doi.org/10.1205/psep06070

Singh, H. K., Saquib, M., Haque, M. M., & Muneer, M. (2008). Heterogeneous photocatalysed decolorization of two selected dye derivatives neutral red and toluidine blue in aqueous suspensions. Chemical Engineering Journal, 136(2–3), 77-81. doi: http://dx.doi.org/10.1016/j.cej.2007.05.009

Sommer, B., Mariño, A., Solarte, Y., Salas, M. L., Dierolf, C., Valiente, C., Mora, D., & Rechteiner, R., 1997, SODIS—An Emergent Water Treatment Process, J. Water Supply: Res. Technol.-AQUA, 46, pp. 127–137.

Zhang, T., Oyama, T. k., Horikoshi, S., Hidaka, H., Zhao, J., & Serpone, N. (2002). Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight. Solar Energy Materials and Solar Cells, 73(3), 287-303. doi: http://dx.doi.org/10.1016/S0927-0248(01)00215-X

Zhu, C., Wang, L., Kong, L., Yang, X., Wang, L., Zheng, S., & Zong, H. (2000). Photocatalytic degradation of AZO dyes by supported TiO2 + UV in aqueous solution. Chemosphere, 41(3), 303-309. doi: http://dx.doi.org/10.1016/S0045-6535(99)00487-7

Most read articles by the same author(s)