Recubrimientos comestibles con materiales micro/nanoestructurados para la conservación de frutas y verduras: una revisión
Contenido principal del artículo
Resumen
Los recubrimientos comestibles para frutas y verduras han logrado prolongar la vida útil de los alimentos postcosecha, dichos recubrimientos a base polisacáridos o proteínas, que incorporan en su formulación lípidos y plastificantes, sirven de barrera para intercambio gaseoso, protegen a los alimentos debido a sus propiedades mecánicas, reducen pérdidas nutricionales y organolépticas, no alteran la composición fisicoquímica y adicionan protección antimicrobiana. Actualmente, los recubrimientos comestibles están formados a base de compuestos bifásicos o trifásicos combinados en una matriz polimérica que potencializan, funcionalizan o adicionan nuevas propiedades al recubrimiento, que vinculado al uso de la nanotecnología en la industria alimentaria han permitido obtener nuevos recubrimientos comestibles, incorporando a la matriz polimérica compuestos antimicrobianos, antioxidantes y con potencial bioactivo. Adicionalmente, el uso de métodos de homogenización como microfluidización y ultrasonicación permiten obtener nanoemulsiones con tamaño de gota nanométrica y uniformes, brindando al recubrimiento nuevas características que en conjunto con el uso del electrospinning (electrohilado), como método físico de aplicación del recubrimiento, se puede obtener nanofibras con alto potencial para el control microbiológico, organoléptico y nutricional, aplicable para la conservación de frutas y verduras. Este artículo revisa el uso de algunas innovaciones en recubrimientos comestibles con material nanoestructurado para la conservación de frutas y verduras.
Descargas
Detalles del artículo
- Los autores se comprometen a respetar la información académica de otros autores, y a ceder los derechos de autor a la Revista infoANALÍTICA, para que el artículo pueda ser editado, publicado y distribuido.
- El contenido de los artículos científicos y de las publicaciones que aparecen en la revista es responsabilidad exclusiva de sus autores. La distribución de los artículos publicados en la Revista infoANALÍTICA se realiza bajo una licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
Citas
Alizadeh-Sani, M., Ehsani, A., Moghaddas, E., & Khezerlou, A. (2019). Microbial gums: introducing a novel functional component of edible coatings and packaging. Applied Microbiology and Biotechnology, 103(17), 6853–6866. https://doi.org/10.1007/s00253-019-09966-x
Arcan, İ., Boyacı, D., & Yemenicioğlu, A. (2017). The Use of Zein and Its Edible Films for the Development of Food Packaging Materials. Reference Module in Food Science, 1–11. https://doi.org/10.1016/b978-0-08-100596-5.21126-8
Badawy, M., Rabea, E., El-Nouby, M., Ismail, R., & Taktak, N. (2017). Strawberry Shelf Life, Composition, and Enzymes Activity in Response to Edible Chitosan Coatings. International Journal of Fruit Science, 17(2), 117–136. https://doi.org/10.1080/15538362.2016.1219290
Bai, L., Lv, S., Xiang, W., Huan, S., McClements, D., & Rojas, O. (2019). Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability. Food Hydrocolloids, 96(April), 699–708. https://doi.org/10.1016/j.foodhyd.2019.04.038
Bettiol, W. (2006). Productos alternativos para el manejo de enfermedades en cultivos comerciales. Fitosanidad, 10(2), 85–98.
Bonilla, J., & Sobral, P. J. A. (2016). Author ’ s Accepted Manuscript. Food Bioscience. https://doi.org/10.1016/j.fbio.2016.07.003
Brasil, I., & Siddiqui, M. (2018). Postharvest Quality of Fruits and Vegetables: An Overview. In Preharvest Modulation of Postharvest Fruit and Vegetable Quality (pp. 1–40). Elsevier Inc. https://doi.org/10.1016/B978-0-12-809807-3.00001-9
Chaudhary, S., Kumar, S., Kumar, V., & Sharma, R. (2020). Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. International Journal of Biological Macromolecules, 152, 154–170. https://doi.org/10.1016/j.ijbiomac.2020.02.276
Cheaburu-Yilmaz, C., Karasulu, H., & Yilmaz, O. (2018). Nanoscaled dispersed systems used in drug-delivery applications. In Polymeric Nanomaterials in Nanotherapeutics (pp. 437–468). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813932-5.00013-3
Ciolacu, L., Nicolau, A., & Hoorfar, J. (2013). Edible coatings for fresh and minimally processed fruits and vegetables. In Global Safety of Fresh Produce: A Handbook of Best Practice, Innovative Commercial Solutions and Case Studies (pp. 233–244). Woodhead Publishing Limited. https://doi.org/10.1533/9781782420279.3.233
Crini, G., & Hatchett, C. (2019). Historical review on chitin and chitosan biopolymers. Environmental Chemistry Letters, (Ilkewitsch 1908). https://doi.org/10.1007/s10311-019-00901-0
De Ancos, B., González-Peña, D., Colina-Coca, C., & Sánchez-Moreno, C. (2015). Uso De Películas/Recubrimientos Comestibles En Los Productos De Iv Y V Gama. Revista Iberoamericana de Tecnología Postcosecha, 16(1), 8–17.
De Souza, E., Lundgren, G., De Oliveira, K., Berger, L., & Magnani, M. (2019). An Analysis of the Published Literature on the Effects of Edible Coatings Formed by Polysaccharides and Essential Oils on Postharvest Microbial Control and Overall Quality of Fruit. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1947–1967. https://doi.org/10.1111/1541-4337.12498
Dhall, R. (2013). Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Critical Reviews in Food Science and Nutrition, 53(5), 435–450. https://doi.org/10.1080/10408398.2010.541568
Dhanapal, A., Rajamani, L., & Banu, M. (2012). Edible films from Polysaccharides. Food Science and Quality, 3(1), 9–18. Retrieved from http://iiste.org/Journals/index.php/FSQM/article/view/1057
Dhumal, C., Pal, K., & Sarkar, P. (2019). Characterization of Tri-Phasic Edible Films from Chitosan, Guar Gum, and Whey Protein Isolate Loaded with Plant-Based Antimicrobial Compounds. Polymer-Plastics Technology and Materials, 58(3), 255–269. https://doi.org/10.1080/03602559.2018.1466179
Divya, K., Vijayan, S., & Jisha, M. S. (2018). Antigunfal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as a edible coating on vegetables. Biological Macromolecules, (2017). https://doi.org/10.1016/j.ijbiomac.2018.03.130
Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible fi lms and coatings : A review. Materials Science & Engineering C, 33(4), 1819–1841. https://doi.org/10.1016/j.msec.2013.01.010
Espino-Manzano, S., León-López, A., Aguirre-Álvarez, G., González-Lemus, U., Prince, L., & Campos-Montiel, R. (2020). Application of nanoemulsions (W/O) of extract of Opuntia oligacantha C.F. först and orange oil in gelatine films. Molecules, 25(15), 1–14. https://doi.org/10.3390/molecules25153487
Farina, V., Passafiume, R., Tinebra, I., Scuderi, D., Saletta, F., Gugliuzza, G., Sortino, G. (2020). Postharvest application of aloe vera gel-based edible coating to improve the quality and storage stability of fresh-cut papaya. Journal of Food Quality, 2020. https://doi.org/10.1155/2020/8303140
Feng, Z., Wu, G., Liu, C., Li, D., Jiang, B., & Zhang, X. (2018). Edible coating based on whey protein isolate nanofibrils for antioxidation and inhibition of product browning. Food Hydrocolloids, 79, 179–188. https://doi.org/10.1016/j.foodhyd.2017.12.028
Freire, W., Ramírez, M., Belmont, P., Mendieta, M., Silva, K., Romero, N., Monge, R. (2014). Tomo1.Encuesta Nacional de Salud y Nutrución ENSANUT-ECU 2012 (Primera Ed). Tomo1. Encuesta Nacional de Salud y Nutrución ENSANUT-ECU 2012. Quito. Retrieved from https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_Sociales/ENSANUT/MSP_ENSANUT-ECU_06-10-2014.pdf
Gao, P., Wang, F., Gu, F., ning, J., Liang, J., Li, N., & Ludescher, R. D. (2017). Preparation and characterization of zein thermo-modified starch films. Carbohydrate Polymers, 157, 1254–1260. https://doi.org/10.1016/j.carbpol.2016.11.004
González-saucedo, A., Barrera-necha, L. L., Ventura-aguilar, R. I., Correa-pacheco, Z. N., Bautista-baños, S., & Hernández-lópez, M. (2019). Postharvest Biology and Technology Extension of the postharvest quality of bell pepper by applying nanostructured coatings of chitosan with Byrsonima crassifolia extract ( L .) Kunth. Postharvest Biology and Technology, 149(April 2018), 74–82. https://doi.org/10.1016/j.postharvbio.2018.11.019
González, C. (2018). Frutas y verduras perdidas y desperdiciadas, una oportunidad para mejorar el consumo. Revista Chilena de Nutricion, 45(3), 198. https://doi.org/10.4067/S0717-75182018000400198
Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097
Henriques, M., Gomes, D., & Pereira, C. (2016). Whey Protein Edible Coatings: Recent Developments and Applications. In V. Dordevic, A. Paraskevopoulou, & F. Mantzouridou (Eds.), Emerging and Traditional Technologies for Safe, Healthy and Quality Food (pp. 329–382). https://doi.org/10.1007/978-3-319-24040-4
INEC. (2012). Encuesta Nacional De Salud (Vol. 1). Retrieved from www.ecuadorencifras.gob.ec/inec/Estadisticas
Jarma, B., Campos, A., LLins, L., Jarma, S., Almeida de Melo, E., & Pinheiro, A. (2020). Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chemistry, 309, 125566. https://doi.org/10.1016/j.foodchem.2019.125566
Ju, J., Xie, Y., Guo, Y., Cheng, Y., Qian, H., & Yao, W. (2019). Application of edible coating with essential oil in food preservation. Critical Reviews in Food Science and Nutrition, 59(15), 2467–2480. https://doi.org/10.1080/10408398.2018.1456402
Keykhosravy, K., Khanzadi, S., Hashemi, M., & Azizzadeh, M. (2020). Chitosan-loaded nanoemulsion containing Zataria Multiflora Boiss and Bunium persicum Boiss essential oils as edible coatings: Its impact on microbial quality of turkey meat and fate of inoculated pathogens. International Journal of Biological Macromolecules, 150, 904–913. https://doi.org/10.1016/j.ijbiomac.2020.02.092
Khin, M. M., Zhou, W., & Perera, C. (2005). Development in the Combined Treatment of Coating and Osmotic Dehydration of Food - A Review. International Journal of Food Engineering, 1(1). https://doi.org/10.2202/1556-3758.1005
Khorram, F., Ramezanian, A., & Hashem, S. (2017). Effect of different edible coatings on postharvest quality of ‘Kinnow’ mandarin. Journal of Food Measurement and Characterization, 11(4), 1827–1833. https://doi.org/10.1007/s11694-017-9564-8
Kumar, N., & Dubey, R. (2020). Edible films and coatings: an uodate on recent advances. In ... Kaustav Majumder Kunal Pal, Indranil Banerjee (Ed.), Biopolymer- Based Formulations (Vol. 4, pp. 2406–2417). Elsevier Inc. https://doi.org/10.1016/b978-0-12-816897-4.00027-8
Kumar, S., & Bhatnagar, T. (2018). Studies to Enhance the Shelf Life of Tomato Using Aloe vera and Neem Based Herbal Coating. International Journal of Agriculture and Fod Science Technology, 6(2), 21–28. Retrieved from http://www.ripublication.com
Lelgut, D., Masani, J., Matofari, J., & Mulwa, R. (2020). Effect of edible gum Arabic coating on the shelf life and quality of mangoes (Mangifera indica) during storage. Journal of Food Science and Technology, 57(1), 79–85. https://doi.org/10.1007/s13197-019-04032-w
Li, X. yu, Du, X. long, Liu, Y., Tong, L. jing, Wang, Q., & Li, J. long. (2019). Rhubarb extract incorporated into an alginate-based edible coating for peach preservation. Scientia Horticulturae, 257(June), 108685. https://doi.org/10.1016/j.scienta.2019.108685
Liao, Y., Loh, C. H., Tian, M., Wang, R., & Fane, A. G. (2018). Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science, 77, 69–94. https://doi.org/10.1016/j.progpolymsci.2017.10.003
Liu, Y., Wang, S., Lan, W., & Qin, W. (2019). Fabrication of polylactic acid/carbon nanotubes/chitosan composite fibers by electrospinning for strawberry preservation. International Journal of Biological Macromolecules, 121, 1329–1336. https://doi.org/10.1016/j.ijbiomac.2018.09.042
Medina, E., Caro, N., Abugoch, L., Gamboa, A., Díaz-Dosque, M., & Tapia, C. (2019). Chitosan thymol nanoparticles improve the antimicrobial effect and the water vapour barrier of chitosan-quinoa protein films. Journal of Food Engineering, 240, 191–198. https://doi.org/10.1016/j.jfoodeng.2018.07.023
Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2(July), 1–16. https://doi.org/10.3389/fsufs.2018.00038
Mohamed, S. A. A., El-Sakhawy, M., & El-Sakhawy, M. A. M. (2020). Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydrate Polymers, 238, 116178. https://doi.org/10.1016/j.carbpol.2020.116178
Mokhtari-Hosseini, Z., Hatamian-Zarmi, A., Mohammadnejad, J., & Ebrahimi-Hosseinzadeh, B. (2018). Chitin and chitosan biopolymer production from the Iranian medicinal fungus Ganoderma lucidum: Optimization and characterization. Preparative Biochemistry and Biotechnology, 48(7), 662–670. https://doi.org/10.1080/10826068.2018.1487847
Muthmainnah, N., Suratman, & Solichatun. (2019). Postharvest application of an edible coating based on chitosan and gum Arabic for controlling respiration rate and vitamin C content of chilli (Capsicum frustecens L.). IOP Conference Series: Materials Science and Engineering, 633(1). https://doi.org/10.1088/1757-899X/633/1/012028
Nawab, A., Alam, F., & Hasnain, A. (2017). Mango kernel starch as a novel edible coating for enhancing shelf- life of tomato (Solanum lycopersicum) fruit. International Journal of Biological Macromolecules, 103, 581–586. https://doi.org/10.1016/j.ijbiomac.2017.05.057
Noori, S., Zeynali, F., & Almasi, H. (2018). Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control, 84, 312–320. https://doi.org/10.1016/j.foodcont.2017.08.015
Páez-Hernández, G., Mondragón-Cortez, P., & Espinosa-Andrews, H. (2019). Developing curcumin nanoemulsions by high-intensity methods: Impact of ultrasonication and microfluidization parameters. Lwt, 111(May), 291–300. https://doi.org/10.1016/j.lwt.2019.05.012
Phuoc, N., Thinh, V., Van, T., Thanh, T., & Kim, D. (2019). Application of Guar Gum as Edible Coating to Prolong Shelf Life of Red Chilli Pepper (Capsicum frutescens L.) Fruit during Preservation. Journal of Pharmaceutical Sciences and Research, 11(4), 1474–1478.
Prakash, A., Baskaran, R., & Vadivel, V. (2020). Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. Lwt, 118(November), 108851. https://doi.org/10.1016/j.lwt.2019.108851
Raghav, P. K., Agarwal, N., Saini, M., Vidhyapeeth, J., & Vidhyapeeth, J. (2016). Edible Coating of Fruits and Vegetables : I Nternational Journal of Scientific and Modern Education, (January).
Ramadan, M. F., & Moersel, J. T. (2009). Oil extractability from enzymatically treated goldenberry (Physalis peruviana L.) pomace: Range of operational variables. International Journal of Food Science and Technology, 44(3), 435–444. https://doi.org/10.1111/j.1365-2621.2006.01511.x
Ramziia, S., Ma, H., Yao, Y., Wei, K., & Huang, Y. (2018). Enhanced antioxidant activity of fish gelatin–chitosan edible films incorporated with procyanidin. Journal of Applied Polymer Science, 135(10), 1–10. https://doi.org/10.1002/app.45781
Reyes-Avalos, M. C., Minjares-Fuentes, R., Femenia, A., Contreras-Esquivel, J. C., Quintero-Ramos, A., Esparza-Rivera, J. R., & Meza-Velázquez, J. (2019). Application of an Alginate – Chitosan Edible Film on Figs ( Ficus carica ): Effect on Bioactive Compounds and Antioxidant Capacity. Food and Bioprocess Technology, 12, 499–511. https://doi.org/https://doi.org/10.1007/s11947-018-2226-y
Robledo, N., López, L., Bunger, A., Tapia, C., & Abugoch, L. (2018). Effects of antimicrobial edible coating of thymol nanoemulsion/quinoa protein/chitosan on the safety, sensorial properties, and quality of refrigerated strawberries (Fragaria × ananassa) under commercial storage environment. Food and Bioprocess Technology, 11(8), 1566–1574. https://doi.org/10.1007/s11947-018-2124-3
Sabbah, M., Giosafatto, C. V. L., Esposito, M., Di Pierro, P., Mariniello, L., & Porta, R. (2018). Transglutaminase cross-linked edible films and coatings for food applications. Enzymes in Food Biotechnology: Production, Applications, and Future Prospects. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813280-7.00021-9
Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2015). Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut fuji apples. Postharvest Biology and Technology, 105, 8–16. https://doi.org/10.1016/j.postharvbio.2015.03.009
Santos, D., Cardoso, R., Mota, J., Rezende, B., Dórea, C., & Da Silva, F. (2020). Edible coatings in post-harvest papaya: impact on physical–chemical and sensory characteristics. Journal of Food Science and Technology, 57(1), 274–281. https://doi.org/10.1007/s13197-019-04057-1
Sapper, M., Talens, P., & Chiralt, A. (2019). Improving functional properties of cassava starch-based films by incorporating xanthan, gellan, or pullulan gums. International Journal of Polymer Science, 2019(6), 1–9. https://doi.org/10.1155/2019/5367164
Scartazzini, L., Tosati, J., Cortez, D., Rossi, M., Flôres, S., Hubinger, M., … Monteiro, A. (2019). Gelatin edible coatings with mint essential oil (Mentha arvensis): film characterization and antifungal properties. Journal of Food Science and Technology, 56(9), 4045–4056. https://doi.org/10.1007/s13197-019-03873-9
Sharma, R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205–221. https://doi.org/10.1016/j.biocontrol.2009.05.001
Singh, D., & Sharma, R. (2018). Postharvest Diseases of Fruits and Vegetables and Their Management. In Postharvest Disinfection of Fruits and Vegetables (pp. 1–52). Elsevier Inc. https://doi.org/10.1016/b978-0-12-812698-1.00001-7
Singh, R., Shitiz, K., & Singh, A. (2017). Chitin and chitosan : biopolymers for wound management. International Wound Journal, 14(6), 1276–1289. https://doi.org/10.1111/iwj.12797
Solano-Doblado, L., Alamilla-Beltrán, L., & Jiménez-Martínez, C. (2018). Películas y recubrimientos comestibles funcionalizados. TIP Revista Especializada En Ciencias Químico-Biológicas, 21, 30. https://doi.org/10.22201/fesz.23958723e.2018.0.153
Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557–569. https://doi.org/10.1002/app.21481
Sucheta, Chaturvedi, K., Sharma, N., & Kumar, S. (2019). Composite edible coatings from commercial pectin, corn flour and beetroot powder minimize post-harvest decay, reduces ripening and improves sensory liking of tomatoes. International Journal of Biological Macromolecules, 133, 284–293. https://doi.org/10.1016/j.ijbiomac.2019.04.132
Tabassum, N., & Ali, M. (2020). Modified atmosphere packaging of fresh-cut papaya using alginate based edible coating: Quality evaluation and shelf life study. Scientia Horticulturae, 259(March 2019), 108853. https://doi.org/10.1016/j.scienta.2019.108853
Tahir, H., Xiaobo, Z., Mahunu, G., Arslan, M., Abdalhai, M., & Zhihua, L. (2019). Recent developments in gum edible coating applications for fruits and vegetables preservation: A review. Carbohydrate Polymers, 224(August), 115141. https://doi.org/10.1016/j.carbpol.2019.115141
Torkamani, A. E., Syahariza, Z. A., Norziah, M. H., Wan, A. K. M., & Juliano, P. (2018). Encapsulation of polyphenolic antioxidants obtained from Momordica charantia fruit within zein/gelatin shell core fibers via coaxial electrospinning. Food Bioscience, 21, 60–71. https://doi.org/10.1016/j.fbio.2017.12.001
Valencia-Chamorro, S., Palou, L., Delŕio, M., & Pérez-Gago, M. (2011). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 51(9), 872–900. https://doi.org/10.1080/10408398.2010.485705
Vieira, I. S., Soares, N., Gontijode, P., Campion, D., Zeni Andrade, M., Otaguro, H., & Pasquini, D. (2019). Edible coatings based on apple pectin, cellulose nanocrystals, and essential oil of lemongrass: Improving the quality and shelf life of strawberries (fragaria ananassa). Journal of Renewable Materials, 7(1), 73–87. https://doi.org/10.32604/jrm.2019.00042
Wen, P., Zhu, D. H., Wu, H., Zong, M. H., Jing, Y. R., & Han, S. Y. (2016). Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control, 59, 366–376. https://doi.org/10.1016/j.foodcont.2015.06.005
Xing, Y., Li, X., Guo, X., Li, W., Chen, J., Liu, Q., Bi, X. (2020). Effects of Different TiO2 Nanoparticles Concentrations on the Physical and Antibacterial Activities of Chitosan-Based Coating Film. Nanomaterials, 10(7), 1365. https://doi.org/10.3390/nano10071365
Xing, Y., Yang, H., Guo, X., Bi, X., Liu, X., Xu, Q., Zheng, Y. (2020). Effect of chitosan/Nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits. Scientia Horticulturae, 263(December 2019), 109135. https://doi.org/10.1016/j.scienta.2019.109135
Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 119(8), 5298–5415. review-article. https://doi.org/10.1021/acs.chemrev.8b00593
Yilmaz, A., Bozkurt, F., Cicek, P. K., Dertli, E., Durak, M. Z., & Yilmaz, M. T. (2016). A novel antifungal surface-coating application to limit postharvest decay on coated apples: Molecular, thermal and morphological properties of electrospun zein–nanofiber mats loaded with curcumin. Innovative Food Science and Emerging Technologies, 37, 74–83. https://doi.org/10.1016/j.ifset.2016.08.008
Yu, D., Xu, Y., Regenstein, J. M., Xia, W., Yang, F., & Wang, B. (2017). The effects of edible chitosan-based coatings on flavor quality of raw grass carp (Ctenopharyngodon idellus) fillets during refrigerated storage. Food Chemistry. https://doi.org/10.1016/j.foodchem.2017.09.037
Yue, T. T., Li, X., Wang, X. X., Yan, X., Yu, M., Ma, J. W., … Long, Y. Z. (2018). Electrospinning of Carboxymethyl Chitosan/Polyoxyethylene Oxide Nanofibers for Fruit Fresh-Keeping. Nanoscale Research Letters, 13. https://doi.org/10.1186/s11671-018-2642-y
Zhang, C., Li, Y., Wang, P., & Zhang, H. (2020). Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Comprehensive Reviews in Food Science and Food Safety, 19(2), 479–502. https://doi.org/10.1111/1541-4337.12536
Zheng, K., Xiao, S., Li, W., Wang, W., Chen, H., Yang, F., & Qin, C. (2019). International Journal of Biological Macromolecules antimicrobial , antioxidant and structural properties. International Journal of Biological Macromolecules, 135, 344–352. https://doi.org/10.1016/j.ijbiomac.2019.05.151
Zhu, F., Zheng, Y., Zhang, B., & Dai, Y. (2020). A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. Journal of Hazardous Materials, 401, 123608. https://doi.org/10.1016/j.jhazmat.2020.123608
Zhu, L., Zaarour, B., & Jin, X. (2019). Fabrication of perfect CMCS/PVA nanofibers for keeping food fresh via an in situ mixing electrospinning. Materials Research Express, 6(12). https://doi.org/10.1088/2053-1591/ab5396
Zuo, G., Song, X., Chen, F., & Shen, Z. (2019). Physical and structural characterization of edible bilayer films made with zein and corn-wheat starch. Journal of the Saudi Society of Agricultural Sciences, 18(3), 324–331. https://doi.org/10.1016/j.jssas.2017.09.005