Monitoring of anaerobic waste digestion at Quito slaughterhouse

Main Article Content

David Chuquer S.
Darío Torres B.
Edgar González V.
Jorge Moncayo S.
Diana Astorga G.
Christian Alcivar L.

Abstract

Organic matter from slaughterhouses can be used through anaerobic digestion to produce biogas and a nutrient-rich fertilizer. Monitoring the concentration of methane, propane, and butane are relevant parameters that show the efficiency of digestion. In the present study, a methodology for the measurement of these hydrocarbons was developed, using Fourier transform infrared spectrophotometry (FTIR) and the assistance of chemical-quantum calculations, which allowed the assignment of absorption bands of each hydrocarbon in biogas. The quantification limits were 0.36 %V/V for propane and butane and 1.47 %V/V for methane. Digestion tests were carried out with waste from the municipal slaughter center of the Metropolitan District of Quito, obtaining that a mixture of rumen and bovine manure, subjected to 50 °C, generated enriched biogas up to 65.4 %V/V after 15 days of digestion. Additionally, solid and liquid digestate produced met with international regulations for possible application in the soil. The results demonstrate the potential of the digestion monitoring method and the possible transformation of litter waste into a renewable energy source.

Downloads

Download data is not yet available.

Article Details

Section
Cientific papers

References

Accettola, F., Guebitz, G. M., & Schoeftner, R. (2008). Siloxane removal from biogas by biofiltration: biodegradation studies. Clean Technologies and Environmental Policy, 10(2), 211–218. https://doi.org/10.1007/s10098-007-0141-4

Afazeli, H., Jafari, A., Rafiee, S., & Nosrati, M. (2014). An investigation of biogas production potential from livestock and slaughterhouse wastes. Renewable and Sustainable Energy Reviews, 34, 380–386. https://doi.org/10.1016/j.rser.2014.03.016

Agrocalidad. (2013). Manual de procedimientos para la inspeccion y habilitacion de mataderos (Resolución DAJ-20134B4-0201.0247). http://www.agrocalidad.gob.ec/wp-content/uploads/2015/07/Manual-procedimiento-inspeccion-y-habilitacion-Mataderos-DAJ-20134B4-0201.0247.pdf

Agrocalidad. (2018). Listado de mataderos bajo inspección oficial - MABIO. http://www.agrocalidad.gob.ec/documentos/inocuidad/listado-de-mataderos-mabio-a-abril-2018.pdf

Bustillo-Lecompte, C. F., & Mehrvar, M. (2015). Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. Journal of Environmental Management, 161, 287–302. https://doi.org/10.1016/j.jenvman.2015.07.008

CFR-US. (1993). Standards for the use or disponsal of sewage sludge. https://www.law.cornell.edu/cfr/text/40/part-503

Comeford, J. J., & Gould, J. H. (1961). Infrared spectra of solid hydrocarbons at very low temperatures. Journal of Molecular Spectroscopy, 5(1–6), 474–481. https://doi.org/10.1016/0022-2852(61)90110-2

Djeffal, S., Mamache, B., Elgroud, R., Hireche, S., & Bouaziz, O. (2018). Prevalence and risk factors for Salmonella spp. contamination in broiler chicken farms and slaughterhouses in the northeast of Algeria. Veterinary World, 11(8), 1102–1108. https://doi.org/10.14202/vetworld.2018.1102-1108

FAO. (2018). Food Outlook. Biannual Report on Global Food Markets. http://www.fao.org/3/ca2320en/CA2320EN.pdf

Hagos, K., Zong, J., Li, D., Liu, C., & Lu, X. (2017). Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and Sustainable Energy Reviews, 76, 1485–1496. https://doi.org/10.1016/j.rser.2016.11.184

Hepburn, C. A., Vale, P., Brown, A. S., Simms, N. J., & McAdam, E. J. (2015). Development of on-line FTIR spectroscopy for siloxane detection in biogas to enhance carbon contactor management. Talanta, 141, 128–136. https://doi.org/10.1016/j.talanta.2015.03.063

Honeycutt, W. T., Ley, M. T., & Materer, N. F. (2019). Precision and Limits of Detection for Selected Commercially Available, Low-Cost Carbon Dioxide and Methane Gas Sensors. Sensors, 19(14), 3157. https://doi.org/10.3390/s19143157

Instituto Nacional de Estadísticas y Censos. (2018). Estadísticas Agropecuarias. ESPAC 2018. http://www.ecuadorencifras.gob.ec/estadisticas-agropecuarias-2/

Irikura, K. K., Johnson, R. D., & Kacker, R. N. (2005). Uncertainties in Scaling Factors for ab Initio Vibrational Frequencies. The Journal of Physical Chemistry A, 109(37), 8430–8437. https://doi.org/10.1021/jp052793n

Kozdruń, W., Czekaj, H., & Styś, N. (2015). Avian zoonoses – a review. Bulletin of the Veterinary Institute in Pulawy, 59(2), 171–178. https://doi.org/10.1515/bvip-2015-0026

Lagrange, B. (1979). Biomethane. Principes, Techniques, Utilisation. Vol.2 (Edisud (ed.)).

Maroto, A., Riu, J., Boqué, R., & Xavier Rius, F. (1999). Estimating uncertainties of analytical results using information from the validation process. Analytica Chimica Acta, 391(2), 173–185. https://doi.org/10.1016/S0003-2670(99)00111-7

Miller, J., Miller, J., & Miller, L. (2018). Statistics and Chemometrics for Analytical Chemistry (7th ed.). Harlow: Pearson Education Limited.

MINENERGIA, PNUD, FAO, & GEF. (2011). Manual de Biogás. http://www.fao.org/3/as400s/as400s.pdf

Nkoa, R. (2014). Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development, 34(2), 473–492. https://doi.org/10.1007/s13593-013-0196-z

Pele, L., Šebek, J., Potma, E. O., & Benny Gerber, R. (2011). Raman and IR spectra of butane: Anharmonic calculations and interpretation of room temperature spectra. Chemical Physics Letters, 515(1–3), 7–12. https://doi.org/10.1016/j.cplett.2011.09.015

Peñafiel, W., & Ticona, D. (2015). Ruminal De Bovino - Matadero Municipal De La Paz. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 87–90.

Pham, C. H., Triolo, J. M., Cu, T. T. T., Pedersen, L., & Sommer, S. G. (2013). Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure. Asian-Australasian Journal of Animal Sciences, 26(6), 864–873. https://doi.org/10.5713/ajas.2012.12623

Reinelt, T., Delre, A., Westerkamp, T., Holmgren, M. A., Liebetrau, J., & Scheutz, C. (2017). Comparative use of different emission measurement approaches to determine methane emissions from a biogas plant. Waste Management, 68, 173–185. https://doi.org/10.1016/j.wasman.2017.05.053

Soares, T. C. S., Gottschalk, M., Lacouture, S., Megid, J., Ribolla, P. E. M., Pantoja, J. C. de F., & Paes, A. C. (2015). Streptococcus suis in employees and the environment of swine slaughterhouses in São Paulo, Brazil: Occurrence, risk factors, serotype distribution, and antimicrobial susceptibility. Canadian Journal of Veterinary Research = Revue Canadienne de Recherche Veterinaire, 79(4), 279–284. http://www.ncbi.nlm.nih.gov/pubmed/26424907

Tezel, U., Tandukar, M., & Pavlostathis, S. G. (2011). Anaerobic Biotreatment of Municipal Sewage Sludge. In Comprehensive Biotechnology (pp. 447–461). Elsevier. https://doi.org/10.1016/B978-0-08-088504-9.00329-9

Varnero-Moreno, M. T. (2011). Manual de Biogás. http://www.fao.org/3/as400s/as400s.pdf

Walkley, A., & Black, I. A. (1934). An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003

Most read articles by the same author(s)