Electrochemical quantification of mercury (II) in aqueous medium on carbon fiber microelectrode modified with gold nanoparticles

Main Article Content

Nicole P´érez-Uresta
Diego Bolaños-Mendez
Marjorie Montero-Jiménez
https://orcid.org/0000-0003-4973-1296
Lenys Fernández
https://orcid.org/0000-0001-6720-6343
Alexis Debut
https://orcid.org/0000-0002-8269-7619
Patricio Espinoza-Montero
https://orcid.org/0000-0003-0592-8652

Abstract

Mercury is considered a highly dangerous pollutant due to its high toxicity and its cumulative nature. It has several effects on human health, such as: nervous system disorders, intellectual disorders, gastrointestinal problems, and cancer. The use of electrochemical techniques is an alternative for the determination of mercury due to its low cost and good sensitivity. This research evaluated a carbon fiber microelectrode modified with gold nanoparticles for the quantification of Mercury (II) in aqueous medium. The modification of the carbon fiber was carried out by electrodepositing gold nanoparticles on the surface, imposing -0.1 V for 100 s. Scanning electron microscopy and cyclic voltammetry was used to confirm the presence of gold nanoparticles. The Mercury (II) signal was measured by differential pulse anodic stripping voltammetry (DPASV). In the calibration curve, a linear response was obtained in the range of 50 - 100 µg L-1. The detection and quantification limits obtained were 38 and 46 µg L-1, respectively. The validation of the methodology was performed using the recovery percentage, obtaining recovery between 94 and 104 % and Relative Standard Deviation (RSD) between 3.6 and 4.7 %. The proposed method shows useful characteristics for monitoring mercury.

Downloads

Download data is not yet available.

Article Details

Section
Cientific papers

References

Abollino, O., Giacomino, A., Malandrino, M., Piscionieri, G., & Mentasti, E. (2008). Determination of mercury by anodic stripping voltammetry with a gold nanoparticle-modified glassy carbon electrode. Electroanalysis, 20(1), 75–83. https://doi.org/10.1002/elan.200704044

Bader, M. (1980). A systematic approach to standard addition methods in instrumental analysis. Journal of Chemical Education, 57(10), 703

Badilla Méndez, C. (2018). Evaluación del grado de contaminación con mercurio (Hg) en Laguna La Señoraza agua, sedimentos y biota. Universidad de Concepción. Facultad de Ciencias Ambientales.

Bernalte, E., Marín Sánchez, C., & Pinilla Gil, E. (2012). Gold nanoparticles-modified screen-printed carbon electrodes for anodic stripping voltammetric determination of mercury in ambient water samples. Sensors and Actuators, B: Chemical, 161(1), 669–674. https://doi.org/10.1016/j.snb.2011.10.088

Bernalte, E., Sánchez, C. M., & Gil, E. P. (2011). Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes. Analytica Chimica Acta, 689(1), 60–64. https://doi.org/10.1016/j.aca.2011.01.042

Berrazueta Lanas, M. E. (2015). Desarrollo y validación de un método para la determinación de mercurio en aguas residuales, por voltamperometría (Master's thesis, Quito: UCE.).

Borja Vera, A. R. (2019). Determinación de Pb (II), Zn (II) en cervezas artesanales de Quito, mediante voltametría de redisolución anódica (Bachelor's thesis, PUCE-Quito).

Carrera, P., Espinoza-Montero, P. J., Fernández, L., Romero, H., & Alvarado, J. (2017). Electrochemical determination of arsenic in natural waters using carbon fiber ultra-microelectrodes modified with gold nanoparticles. Talanta, 166, 198–206. https://doi.org/10.1016/j.talanta.2017.01.056

Guan, P., Guo, P. R., Liu, N., Zhang, F., & Lei, Y. Q. (2018). The preparation of a flexible AuNP modified carbon cloth electrode and its application in electrochemical detection of Hg(ii) by continuous flow in environmental water. Analyst, 143(18), 4436–4441. https://doi.org/10.1039/c8an01284a

Hezard, T., Fajerwerg, K., Evrard, D., Collière, V., Behra, P., & Gros, P. (2012). Influence of the gold nanoparticles electrodeposition method on Hg(II) trace electrochemical detection. Electrochimica Acta, 73(Ii), 15–22. https://doi.org/10.1016/j.electacta.2011.10.101

INEN. (2014). Agua Potable. Requisitos. Nte Inen 1108. Retrieved from https://bibliotecapromocion.msp.gob.ec/greenstone/collect/promocin/index/assoc/HASH01a4.dir/doc.pdf%0Ahttp://normaspdf.inen.gob.ec/pdf/nte/1108-5.pdf

Li, Z., Xia, S., Wang, J., Bian, C., & Tong, J. (2016). Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry. Journal of Hazardous Materials, 301, 206–213. https://doi.org/10.1016/j.jhazmat.2015.08.061

Martínez, X. G. (2004). El mercurio como contaminante global: Desarrollo de metodologías para su determinación en suelos contaminados y estrategias para la reducción de su liberación al medio ambiente. Universitat Autònoma de Barcelona, 0, 246. https://doi.org/http://hdl.handle.net/10803/3174

Méndez, C. (2018). Evaluación del grado de contaminación con mercurio (Hg) en Laguna La Señoraza agua, sedimentos y biota (Doctoral dissertation, Universidad de Concepción. Facultad de Ciencias Ambientales)

Richter, P., Toral, M. I., & Abbott, B. (2002). Anodic stripping voltammetric determination of mercury in water by using a new electrochemical flow through cell. Electroanalysis, 14(18), 1288–1293. https://doi.org/10.1002/1521-4109(200210)14:18<1288::AID-ELAN1288>3.0.CO;2-5

Sabino, J. F. P., Valladares, B., Hernández, E., Oliva, B., Del Cid, M., & Reyes, P. J. (2015). Determinación de arsénico y mercurio en agua superficial del lago de Atitlán. Ciencia, Tecnología y Salud, 2(2), 37–44.

Tafur, J., Espinoza-Montero, P., Manciati, C., Fierro-Naranjo, C., Swain, G. M., & Fernández, L. (2018). Evaluation of BDD electrode in the determination of Cd(II), Pb(II) and Hg(II) in wastewater mining (Portovelo – Zaruma, Provincia de El Oro, Ecuador). Rev. Téc. Ing. Univ. Zulia, 41(2). Retrieved from http://produccioncientificaluz.org/index.php/tecnica/article/view/23484

Most read articles by the same author(s)