Green synthesis of silver nanoparticlesusing the aqueous extract of the leaves of garlic plant (Allium sativum)

Main Article Content

Maria Pilaquinga F.
Katherine Pazmiño V
Alexandra Robalino T.
Eliza Jara N.
Fernanda López F.
Lorena Meneses O.
Karla Vizuete A.
Alexis Debut M.

Abstract

Many studies of biosynthesis of silver nanoparticles have been described using garlic bulb extract (Allium sativum) as a reducing agent. However, the use of its leaves is little known as it is considered a waste product. In this study, silver nanoparticles size obtained with the aqueous extract of the garlic leaves were compared using two different heating techniques: plate and microwave. The nanoparticles obtained were characterized by Visible UV spectrophotometry, electron transmission microscopy (TEM), dynamic light scattering (DLS) and Xray diffraction (XRD). As a result, the average size nanoparticles obtained were 15.4±7.9 and 9.9±10.5 nm, using both techniques. Based on the statistical analysis carried out it was proven that there are significant differences in relation to the size of the nanoparticle obtained. It is concluded that the aqueous extract of the leaves of garlic plant is a suitable reducing agent for the synthesis of silver nanoparticles and that the microwave technique is more effective because of the speed and size of nanoparticles obtained.

Downloads

Download data is not yet available.

Article Details

Section
Cientific papers

References

Abdo, M. S., & Al-Kafawi, A. A. (1969). Biological Activities of Allium Sativum. The Japanese Journal of Pharmacology, 19(1), 1–4.

Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17–28.

Banerjee, S., Hess, D., Majumder, P., Roy, D., & Das, S. (2004). The Interactions of Allium sativum Leaf Agglutinin with a Chaperonin Group of Unique Receptor Protein Isolated from a Bacterial Endosymbiont of the Mustard Aphid. Journal of Biological Chemistry, 279(22), 23782–23789.

Bender-Bojalil, D., & Bárcenas-Pozos, M. E. (2013). El ajo y sus aplicaciones en la conservación de alimentos. Temas Selectos de Ingeniería de Alimentos, 7(1), 25–36.

Broadhurst, C. L., Polansky, M. M., & Anderson, R. A. (2000). Insulin-like Biological Activity of Culinary and Medicinal Plant Aqueous Extracts in Vitro. Journal of Agricultural and Food Chemistry, 48(3), 849–852.

Cardeño Calle, L., & Londoño, M. E. (2014). Síntesis verde de nanopartículas de plata mediante el uso del ajo (Allium sativum). Revista Soluciones de Postgrado EIA, 6(12), 129–140.

Dutta, I., Saha, P., Majumder, P., Sarkar, A., Chakraborti, D., Banerjee, S., & Das, S. (2005). The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnology Journal, 3(6), 601–611.

Ghosh, P., Roy, A., Chakraborty, J., & Das, S. (2013). Biological Safety Assessment of Mutant Variant of Allium sativum Leaf Agglutinin (mASAL), a Novel Antifungal Protein for Future Transgenic Application. Journal of Agricultural and Food Chemistry, 61(48), 11858–11864.

Harris, J. C., Cottrell, S. L., Plummer, S., & Lloyd, D. (2001). Antimicrobial properties of Allium sativum (garlic). Applied Microbiology and Biotechnology, 57(3), 282–286.

Kahrilas, G. A., Wally, L. M., Fredrick, S. J., Hiskey, M., Prieto, A. L., & Owens, J. E. (2014). Microwave-Assisted Green Synthesis of Silver Nanoparticles Using Orange Peel Extract. ACS Sustainable Chemistry & Engineering, 2(3), 367–376.

Kesharwani, J., Yoon, K. Y., Hwang, J., & Rai, M. (2009). Phytofabrication of Silver Nanoparticles by Leaf Extract of Datura metel: Hypothetical Mechanism Involved in Synthesis. Journal of Bionanoscience, 3(1), 39–44.

Kim, M.-Y., Kim, Y.-C., & Chung, S.-K. (2005). Identification and in vitro biological activities of flavonols in garlic leaf and shoot: inhibition of soybean lipoxygenase and hyaluronidase activities and scavenging of free radicals. Journal of the Science of Food and Agriculture, 85(4), 633–640.

Meriga, B., Mopuri, R., & MuraliKrishna, T. (2012). Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pacific Journal of Tropical Medicine, 5(5), 391–395.

Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356.

Morejón, B., Pilaquinga, F., Domenech, F., Ganchala, D., Debut, A., & Neira, M. (2018). Larvicidal Activity of Silver Nanoparticles Synthesized Using Extracts of Ambrosia arborescens (Asteraceae) to Control Aedes aegypti L. (Diptera: Culicidae). Journal of Nanotechnology, 2018, 1–8.

Pradeep, T. (2012). A Textbook of Nanoscience and Nanotechnology (1. ed.). Nueva Deli: McGraw Hill.

Ramesh, S., Grijalva, M., Debut, A., de la Torre, B. G., Albericio, F., & Cumbal, L. H. (2016). Peptides conjugated to silver nanoparticles in biomedicine – a “value-added” phenomenon. Biomaterials Science, 4(12), 1713–1725.

Rastogi, L., & Arunachalam, J. (2011). Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Materials Chemistry and Physics, 129(1–2), 558–563.


Rastogi, L., & Arunachalam, J. (2013). Green synthesis route for the size controlled synthesis of biocompatible gold nanoparticles using aqueous extract of garlic (allium sativum). Advanced Materials Letters, 4(7), 548–555.

Roy, S., & Das, T. K. (2015). Plant Mediated Green Synthesis of Silver Nanoparticles-A Review. International Journal of Plant Biology & Research, 3(03), 1044–1055.

Smeets, K., Van Damme, E. J. M., Verhaert, P., Barre, A., Rougé, P., Van Leuven, F., & Peumans, W. J. (1997). Isolation, characterization and molecular cloning of the mannose-binding lectins from leaves and roots of garlic (Allium sativum L.). Plant Molecular Biology, 33(2), 223–234.

Stan, M., Popa, A., Toloman, D., Silipas, T.-D., & Vodnar, D. C. (2016). Antibacterial and Antioxidant Activities of ZnO Nanoparticles Synthesized Using Extracts of Allium sativum, Rosmarinus officinalis and Ocimum basilicum. Acta Metallurgica Sinica (English Letters), 29(3), 228–236.

Vizuete, K. S., Kumar, B., Vaca, A. V., Debut, A., & Cumbal, L. (2016). Mortiño (Vaccinium floribundum Kunth) berry assisted green synthesis and photocatalytic performance of Silver–Graphene nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry, 329, 273–279.

Von White, G., Kerscher, P., Brown, R. M., Morella, J. D., McAllister, W., Dean, D., & Kitchens, C. L. (2012). Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. Journal of Nanomaterials, 2012, 55.

Most read articles by the same author(s)