COMPUTATIONAL MODELING OF CRUZIOSEPTIN CC-17 EXTRACTED FROM THE FROG Cruziohyla calcarifer

Main Article Content

Damaris Reinoso D.
https://orcid.org/0000-0002-6154-3119
Sebastián Cuesta H.
https://orcid.org/0000-0002-8035-6220
Carolina Proaño-Bolaños
https://orcid.org/0000-0001-9279-1038
Lorena Meneses O.
https://orcid.org/0000-0002-1517-5247

Abstract

The inappropriate use of antibiotics has led to an increase in the rate of bacterial resistance, therefore, the study of new compounds with bioactive properties has been essential to face the challenge caused by the lack of effective drugs for the treatment of infections caused by a wide range of bacteria. In this sense, the present research work focuses on the computational modeling of Cruzioseptin CC-17 belonging to the family of peptides extracted from the exudate of the Cruziohyla calcarifer frog. Initially, the characterization of the peptide was carried out based on its physicochemical properties and the elucidation of its secondary structure. In addition, molecular docking was performed to analyze the activity of the different enzymes present in Escherichia coli, Staphylococcus aureus and Candida albicans and with molecules present in the bacterial cell membrane. The results show that Cruzioseptin CC-17 is a peptide which secondary structure is predominantly composed of alpha helical regions and has a net charge of +2 which gives it the basic character, has an isoelectric point of 8.6 and is composed of a 52.7% by hydrophobic amino acids, which confirms its cationic character. In the other hand, molecular docking results shows that the bioactivity of the peptide can be explained based on a concentrated attack mechanism on the bacterial cell membrane where the cell lysis occurs by the electrostatic interactions between Cruzioseptin CC-17 with the different molecules
of the cell membrane. 

Downloads

Download data is not yet available.

Article Details

Section
Cientific papers

References

Aguayo-Ortiz, R., & Fernández-de Gortari, E. (2018). Overview of Computer-Aided Drug Design for Epigenetic Targets. Epi-Informatics. En Ranganathan, S.,Nakai, K., Schonbach, C. Encyclopedia of Bioinformatics and Computational Biology (1st ed, 21-52). Oxford: Elsevier.

Arakawa, C. K., & DeForest, C. A. (2017). Polymer Design and Development. En Vishwakarma, A. & Karp, J (Ed). Biology and Engineering of Stem Cell Niches (1st ed, 295–314). Massachusetts: Academic Press

Babii, O., Afonin, S., Schober, T., Komarov, I., & Ulrich, A. (2017). Flexibility vs rigidity of amphipathic peptide conjugates when interacting with lipid bilayers. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1859(12), 2505–2515.

Bahar, A., & Ren, D. (2013). Antimicrobial Peptides. Pharmaceuticals, 6(12), 1543-1575.

Berman, H., Battistuz, T., Bhat, T., Bluhm, W., Bourne, P., Burkhardt, K., Feng, Z., Gilliland, G., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J., & Zardecki, C. (2002). The Protein Data Bank. Acta Crystallographica. Section D, Biological Crystallography, 58(Pt 6 No 1), 899–907.

Bio-Synthesis. (2010). Peptide Calculator. https://www.biosyn .com/peptidepropertycalculatorl anding.aspx

Borah, A., Deb, B. & Chakraborty, S. A Crosstalk on Antimicrobial Peptides. International Journal of Peptide Research and Therapeutics, 27 (2021), 229–244.

Cantor, S., Vargas, L., Rojas A., O., Yarce, C., Salamanca, C., & Oñate-Garzón, J. (2019). Evaluation of the Antimicrobial Activity of Cationic Peptides Loaded in Surface-Modified Nanoliposomes against Foodborne Bacteria. International Journal of Molecular Sciences, 20(3), 680. doi:10.3390/ijms20030680

CDC. (2020). Antibiotic-Resistant Germs: New Threats. Recuperado 27 de septiembre de 2020 de https://www.cdc. gov/drugresistance/biggest-threats.html

Cuesta, S., Gallegos, F., Arias, J., Pilaquinga, F., Blasco-Zúñiga, A., Proaño-Bolaños, C., Rivera, M., & Meneses, L. (2019). Modelamiento molecular de la dermaseptina SP2 extraída de Agalychnis spurrelli. Infoanalítica, 7(1), 41-56.

Datta, S., & Roy, A. (2020). Antimicrobial Peptides as Potential Therapeutic Agents: A Review. International Journal of Peptide Research and Therapeutics, 27(2021), 555-577.

De Paula, V. S., & Valente, A. P. (2018). A Dynamic Overview of Antimicrobial Peptides and Their Complexes. Molecules, 23(8), 1-13.

Demori, I., Rashed, Z. E., Corradino, V., Catalano, A., Rovegno, L., Queirolo, L., Salvidio, S., Biggi, E., Zanotti-Russo, M., Canesi, L., Catenazzi, A., & Grasselli, E. (2019). Peptides for Skin Protection and Healing in Amphibians. Molecules, 24(2),1-15.

Drozdetskiy, A., Cole, C., & Procter, J. (2015). JPred4: A protein secondary structure prediction server. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489285/

Dunn, B. M. (2013). Aspartic Proteases. Encyclopedia of Biological Chemistry, 1(1), 123–127.

Garret, R., & Grishman, C. (2017). Biochemistry. Virginia: CENGAGE Learning.

Faivovich, J., Haddad, C., García, P., Frost, D., Campbell, J., & Wheeler, W. (2005). Sistematic Review of the Frog Family Hylidae, with Special Reference to Hylinae: Phylogenetic Analysis and Taxonomic Revision. New York: American Museum of Natural History.

Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., & Petersson, G. (2016). Gaussian 09, Revision C.01. Gaussian, Inc.

Jindal, M., Le, C., Mohd, M., & Sekaran, S. (2014). Net Charge, Hydrophobicity and Specific Aminoacids to the Activity of Antimicrobial peptides. Journal Of Health And Translational Medicine, 17(1), 1-7.

Koehbach, J., & Craik, D. (2019). The Vast Structural Diversity of Antimicrobial Peptides. Trends in Pharmacological Sciences, 40(7), 517-528.

Kumar, P., Kizhakkedathu, J., & Straus, S. (2018). Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules, 8(4), 1-24.

Lear, S., & Cobb, S. (2016). Pep-Calc.Com: A Set of Web Utilities for the Calculation of Peptide and Peptoid Properties and Automatic Mass Spectral Peak Assignment. Journal of Computer-Aided Molecular Design, 30(3), 271-77.

Lee, T., Hall, K., & Aguilar, M. (2015). Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure. Current Topics in Medicinal Chemistry, 16(1), 25-39.

Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D., & He, Q. (2019). The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research, 11(7), 3919-3931.

Lewies, A., Du Plessis, L., & Wentzel, J. (2019). Antimicrobial Peptides: The Achilles’ Heel of Antibiotic Resistance?. Probiotics and Antimicrobial Proteins, 11(2), 370-381.

Li, L., Vorobyov, I., & Allen, T. W. (2013). The Different Interactions of Lysine and Arginine Side Chains with Lipid Membranes. The Journal of Physical Chemistry B, 117(40), 11906–11920.

López, J., Zenak, S., De la Torre, J., Guy, O., Garro, A., & Enriz, R. (2018). Small Cationic Peptides: Influence of Charge on Their Antimicrobial Activity. ACS Omega, 3(5), 5390-5398.

Ramos, O., & Malcata, F. (2011). Food-Grade Enzymes. Comprehensive Biotechnology, 555–569. doi:10.1016/b978-0-08-088504-9.00213-0

Morris, G., Huey, R., Lindstrom, W., Sanner, M., Belew, R., Goodsell, D., & Olson, A. (2009). AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry, 30(16), 2785-2791.

Museo de Zoología PUCE, (2020). Anfibios del Ecuador. Recuperado 15 de Septiembre de 2020 de https://bioweb.bio/faunaweb/amphibiaweb/

Proaño-Bolaños, C., Blasco-Zúñiga, A., Almeida, J., Wang, L., Llumiquinga, M., Rivera, M., Zhou, M., Chen, T., & Shaw, C. (2019). Unravelling the Skin Secretion Peptides of the Gliding Leaf Frog, Agalychnis Spurrelli (Hylidae). Biomolecules, 9(11), 1-20.

Proaño-Bolaños, C, Zhou, M., Wang, L., Coloma, L., Chen, T & Shaw, C. (2016). Peptidomic approach identifies cruzioseptins, a new family of potent antimicrobial peptides in the splendid leaf frog, Cruziohyla calcarifer. Journal of Proteomics, 146(2016), 1-13.

Raheem, N., & Straus, S. K. (2019). Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Frontiers in Microbiology, 10(2866), 1-14.

Ramos, O., & Malcata, F. (2011). Food-Grade Enzymes. En Moo, M (Ed). Comprehensive Biotechnology (2nd ed., pp. 555-569). Massachusetts: Academic Press

Rončević, T., Vukičević, D., Ilić, N., Krce, L., Gajski, G., Tonkić, M., Goić-Barišić, I., Zoranić, l., Sonavane, Y., Benincasa, M., Juretić, D., Maravić, A., & Tossi, A. (2018). Antibacterial Activity Affected by the Conformational Flexibility in Glycine–Lysine Based α-Helical Antimicrobial Peptides. Journal of Medicinal Chemistry, 61(7), 2924–2936.

Schrödinger. (2017). The PyMOL Molecular Graphics System. Schrödinger,LLC.

Seyfi, R., Abarghooi, F., Ebrahimi, T., Montazersaheb, S., Eyvazi, S., Babaeipour, V., & Tarhriz, V. (2020). Antimicrobial Peptides (AMPs): Roles, Functions and Mechanism of Action. International Journal of Peptide Research and Therapeutics, 26(3), 1451-1463.

Strahl, H., & Errington, J. (2017). Bacterial Membranes: Structure, Domains, and Function. Annual Review of Microbiology, 71(1), 519-538.

Trott, O., & Olson, A. (2010). AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 31(2), 455-461.

Varga, J. F., Bui-Marinos, M. P., & Katzenback, B. A. (2019). Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens. Frontiers in Immunology, 9(3128), 1-21.

Wang G. (2020). Bioinformatic Analysis of 1000 Amphibian Antimicrobial Peptides Uncovers Multiple Length-Dependent Correlations for Peptide Design and Prediction. Antibiotics, 9(8), 1-26.

Yachdav, G., & Rost, B. (2013). PredictProtein—Protein Sequence Analysis, Prediction of Structural and Functional Features. https://predictprotein.org/

Zhang, C., Yang, M., & Ericsson, A. (2019). Antimicrobial Peptides: Potential Application in Liver Cancer. Frontiers in Microbiology, 1257(10), 1-10.

Most read articles by the same author(s)